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Solution of Classical Field Equations Using Finite
Difference Techniques

1. Solving the wave equation using finite difference
techniques
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Preliminaries

• Classical field equations ≡ time dependent partial differential equations (PDEs)

• Can divide time-dependent PDEs into two broad classes:

1. Initial-value Problems (Cauchy Problems), spatial domain has no
boundaries (either infinite or “closed”—e.g. “periodic boundary conditions”)

2. Initial-Boundary-Value Problems, spatial domain finite, need to specify
boundary conditions

• Note: Even if physical problem is really of type 1, finite computational
resources −→ finite spatial domain −→ approximate as type 2; will hereafter
loosely refer to either type as an IVP.

• Working Definition: Initial Value Problem

• State of physical system arbitrarily (usually) specified at some initial time
t = t0.

• Solution exists for t ≥ t0; uniquely determined by equations of motion
(EOM) and boundary conditions (BCs).
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Preliminaries

• Approximate solution of initial value problems using any numerical method,
including finite differencing, will always involve three key steps

1. Complete mathematical specification of system of PDEs, including boundary
conditions and initial conditions

2. Discretization of the system: replacement of continuous domain by discrete
domain, and approximation of differential equations by algebraic equations
for discrete unknowns

3. Solution of discrete algebraic equations

• Will assume that the set of PDEs has a unique solution for given initial
conditions and boundary conditions, and that the solution does not “blow up”
in time, unless such blow up is expected from the physics

• Whenever this last condition holds for an initial value problem, we say that the
problem is well posed

• Note that this is a non-trivial issue in general relativity, since there are in
practice many distinct forms the PDEs can take for a given physical scenario
(in principle infinitely many), and not all will be well-posed in general
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Preliminaries

● Mathematical well-posedness

● Hyperbolicity
– Weak

– Strong

– Strict

– Symmetric

● Maximally Dissipative Boundary conditions
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posedness and hyperbolicity presented here is of necessity brief and touches only
on the main ideas, a more formal discussion can be found in the book by Kreiss
and Lorenz [177] (see also the review paper of Reula [241]).

5.2 Well-posedness

Consider a system of partial differential equations of the form

∂tu = P (D)u , (5.2.1)

where u is some n-dimensional vector-valued function of time and space, and
P (D) is an n × n matrix with components that depend smoothly on spatial
derivative operators.45 The Cauchy or initial value problem for such a system
of equations corresponds to finding a solution u(t, x) starting from some known
initial data u(t = 0, x).

A crucial property of a system of partial differential equations like the one
considered above is that of well-posedness, by which we understands that the
system is such that its solutions depend continuously on the initial data, or
in other words, that small changes in the initial data will correspond to small
changes in the solution. More formally, a system of partial differential equations
is called well-posed if we can define a norm || · || such that

||u(t, x)|| ≤ keαt||u(0, x)|| , (5.2.2)

with k and α constants that are independent of the initial data. That is, the
norm of the solution can be bounded by the same exponential for all initial data.

Most systems of evolution equations we usually find in mathematical physics
turn out to be well-posed, which explains why there has been some complacency
in the numerical relativity community about this issue. However, it is in fact
not difficult to find rather simple examples of evolution systems that are not
well-posed. We will consider three such examples here. The easiest example is
the inverse heat equation which can be expressed as

∂tu = −∂2xu . (5.2.3)

Assume now that as initial data we take a Fourier mode u(0, x) = eikx. In that
case the solution to the last equation can be easily found to be

u(x, t) = ek2t+ikx . (5.2.4)

We then see that the solution grows exponentially with time, with an exponent
that depends on the frequency of the initial Fourier mode k. It is clear that by

45One should not confuse the vectors we are considering here with vectors in the sense
of differential geometry. A vector here only represents an ordered collection of independent
variables.
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increasing k we can increase the rate of growth arbitrarily, so the general solution
can not be bounded by an exponential that is independent of the initial data.
This also shows that given any arbitrary initial data, we can always add to it
a small perturbation of the form εeikx, with ε � 1 and k � 1, such that after
a finite time the solution can be very different, so there is no continuity of the
solutions with respect to the initial data.

A second example is the two-dimensional Laplace equation where one of the
two dimensions is taken as representing “time”:

∂2t φ = −∂2xφ . (5.2.5)

This equation can be trivially written in first order form by defining u1 := ∂tφ
and u2 := ∂xφ. We find

∂tu1 = −∂xu2 , (5.2.6)
∂tu2 = +∂xu1 , (5.2.7)

where the second equation simply states that partial derivatives of φ commute.
Again, consider a Fourier mode as initial data. The solution is now found to be

φ = φ0e
kt+ikx , u1 = kφ0e

kt+ikx , u2 = ikφ0e
kt+ikx . (5.2.8)

We again see that the solution grows exponentially with a rate that depends
on the frequency of the initial data k, so it can not be bounded in a way that
is independent of the initial data. This shows that the Laplace equation is ill-
posed when seen as a Cauchy problem, and incidentally explains why numerical
algorithms that attempt to solve the Laplace equation by giving data on one
boundary and then “evolving” to the opposite boundary are bound to fail (nu-
merical errors will explode exponentially as we march ahead).

The two examples above are rather artificial, as the inverse heat equation
is unphysical and the Laplace equation is not really an evolution equation. Our
third example of an ill-posed system is more closely related to the problem of
the 3+1 evolution equations. Consider the simple system

∂tu1 = ∂xu1 + ∂xu2 , (5.2.9)
∂tu2 = ∂xu2 . (5.2.10)

This system can be rewritten in matrix notation as

∂tu = M∂xu , (5.2.11)

with u = (u1, u2) and M the matrix

M =
(

1 1
0 1

)
. (5.2.12)
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Again, consider the evolution of a single Fourier mode. The solution of the system
of equations can then be easily shown to be

u1 = (ikAt + B) eik(t+x) , u2 = Aeik(t+x) , (5.2.13)

with A and B constants. Notice that u2 is oscillatory in time, so it is clearly
bounded. However, u1 has both an oscillatory part and a linear growth in time
with a coefficient that depends on the initial data. Again, it is impossible to
bound the growth in u1 with an exponential that is independent of the initial
data, as for any time t we can always choose k large enough to surpass any such
bound. The system is therefore ill-posed.

Systems of this last type in fact often appear in reformulations of the 3+1
evolution equations (particularly in the ADM formulation). The problem can be
traced back to the form of the matrix M above. Such a matrix is called a Jordan
block (of order 2 in this case), and has two identical real eigenvalues but can not
be diagonalized.

In the following Section we will consider a special type of system of partial
differential equations called hyperbolic that can be shown to be well-posed under
very general conditions.

5.3 The concept of hyperbolicity

Consider a first order system of evolution equations of the form

∂tu + M i∂iu = s(u) , (5.3.1)

where M i are n × n matrices, with the index i running over the spatial dimen-
sions, and s(u) is a source vector that may depend on the u’s but not on their
derivatives. In fact, if the source term is linear in the u’s we can show that
the full system will be well-posed provided that the system without sources is
well-posed. We will therefore ignore the source term from now on. Also, we will
assume for the moment that the coefficients of the matrices M i are constant.

There are several different ways of introducing the concept of hyperbolic-
ity of a system of first order equations like (5.3.1).46 Intuitively, the concept
of hyperbolicity is associated with systems of evolution equations that behave
as generalizations of the simple wave equation. Such systems are, first of all,
well-posed, but they also should have the property of having a finite speed of
propagation of signals, or in other words, they should have a finite past domain
of dependence.

We will start by defining the notion of hyperbolicity based on the properties of
the matrices M i, also called the characteristic matrices. Consider an arbitrary
unit vector ni, and construct the matrix P (ni) := M ini, also known as the

46One can in fact also define hyperbolicity for systems of second order equations (see for
example [154, 155, 212]), but here we will limit ourselves to first order systems as we can
always write the 3+1 evolution equations in this form.
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principal symbol of the system of equations (one often finds that P is multiplied
with the imaginary unit i, but here we will assume that the coefficients of the
M i are real so we will not need to do this). We then say that the system (5.3.1)
is strongly hyperbolic if the principal symbol has real eigenvalues and a complete
set of eigenvectors for all ni. If, on the other hand, P has real eigenvalues for all
ni but does not have a complete set of eigenvectors then the system is said to
be only weakly hyperbolic (an example of a weakly hyperbolic system is precisely
the Jordan block considered in the previous Section). For a strongly hyperbolic
system we can always find a positive definite Hermitian (i.e. symmetric in the
purely real case) matrix H(ni) such that

HP − PT HT = HP − PT H = 0 , (5.3.2)

where the superindex T represents the transposed matrix. In other words, the
new matrix HP is also symmetric, and H is called the symmetrizer. The sym-
metrizer is in fact easy to find. By definition, if the system is strongly hyperbolic
the symbol P will have a complete set of eigenvectors ea such that (here the
index a runs over the dimensions of the space of solutions u)

Pea = λaea , (5.3.3)

with λa the corresponding eigenvalues. Define now R as the matrix of column
eigenvectors. The matrix R can clearly be inverted since all the eigenvectors are
linearly independent. The symmetrizer is then given by

H = (R−1)T R−1 , (5.3.4)

which is clearly Hermitian and positive definite. To see that HP is indeed sym-
metric notice first that

R−1PR = Λ , (5.3.5)

with Λ = diag(λa) (this is just a similarity transformation of P into the basis of
its own eigenvectors). We can then easily see that

HP = (R−1)T R−1P = (R−1)T ΛR−1 . (5.3.6)

But Λ is diagonal so that ΛT = Λ, which immediately implies that (R−1)T ΛR−1

is symmetric. Of course, since the eigenvectors ea are only defined up to an arbi-
trary scale factor and are therefore not unique, the matrix R and the symmetrizer
H are not unique either.

We furthermore say that the system of equations is symmetric hyperbolic if
all the M i are symmetric, or more generally if the symmetrizer H is independent
of ni. Symmetric hyperbolic systems are therefore also strongly hyperbolic, but
not all strongly hyperbolic systems are symmetric. Notice also that in the case
of one spatial dimension any strongly hyperbolic system can be symmetrized,
so the distinction between symmetric and strongly hyperbolic systems does not
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arise. We can also define a strictly hyperbolic system as one for which the eigen-
values of the principal symbol P are not only real but are also distinct for all
ni. Of course, this immediately implies that the symbol can be diagonalized, so
strictly hyperbolic systems are automatically strongly hyperbolic. This last con-
cept, however, is of little use in physics where we often find that the eigenvalues
of P are degenerate, particularly in the case of many dimensions.

The importance of the symmetrizer H is related to the fact that we can use
it to construct an inner product and norm for the solutions of the differential
equation in the following way

〈u, v〉 := u†Hv , (5.3.7)
||u||2 := 〈u, u〉 = u†Hu , (5.3.8)

where u† is the adjunct of u, i.e. its complex-conjugate transpose (we will allow
complex solutions in order to use Fourier modes in the analysis). In geometric
terms the matrix H plays the role of the metric tensor in the space of solutions.
The norm defined above is usually called an energy norm since in some simple
cases it coincides with the physical energy.

We can now use the evolution equations to estimate the growth in the energy
norm. Consider a Fourier mode of the form

u(x, t) = ũ(t)eik�x·�n . (5.3.9)

We will then have

∂t||u||2 = ∂t

(
u†Hu

)
= ∂t(u†)Hu + u†H∂t(u)

= ikũT PT Hũ − ikũT HPũ

= ikũT
(
PT H − HP

)
ũ = 0 , (5.3.10)

where on the second line we have used the evolution equation (assuming s = 0).
We then see that the energy norm remains constant in time. This shows that
strongly and symmetric hyperbolic systems are well-posed. We can in fact show
that hyperbolicity and the existence of a conserved energy norm are equivalent,
so instead of analyzing the principal symbol P we can look directly for the
existence of a conserved energy to show that a system is hyperbolic. Notice that
for symmetric hyperbolic systems the energy norm will be independent of the
vector ni, but for systems that are only strongly hyperbolic the norm will in
general depend on ni.

Now, for a strongly hyperbolic system we have by definition a complete set
of eigenvectors and we can construct the matrix of eigenvectors R. We will use
this matrix to define the eigenfunctions wi (also called eigenfields) as

u = R w ⇒ w = R−1 u . (5.3.11)

Notice that, just as was the case with the eigenvectors, the eigenfields are only
defined up to an arbitrary scale factor. Consider now the case of a single spatial
dimension x. By multiplying equation (5.3.1) with R−1 on the left we find that
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∂tw + Λ ∂xw = 0 , (5.3.12)

so that the evolution equations for the eigenfields decouple. We then have a set of
independent advection equations, each with a speed of propagation given by the
corresponding eigenvalue λa. This is the mathematical expression of the notion
that associates a hyperbolic system with having independent “wave fronts” prop-
agating at (possibly different) finite speeds. Of course, in the multidimensional
case the full system will generally not decouple even for symmetric hyperbolic
systems, as the eigenfunctions will depend on the vector ni.

We can in fact use the eigenfunctions also to study the hyperbolicity of a sys-
tem; the idea here would be to construct a complete set of linearly independent
eigenfunctions wa that evolve via simple advection equations starting from the
original variables ua. If this is possible then the system will be strongly hyper-
bolic. For systems with a large number of variables this method is often simpler
than constructing the eigenvectors of the principal symbol directly, as finding
eigenfunctions can often be done by inspection (this is in fact the method we
will use in the following Sections to study the hyperbolicity of the different 3+1
evolution systems).

Up until now we have assumed that the characteristic matrices M i have
constant coefficients, and also that the source term s(u) vanishes. In the more
general case when s(u) 
= 0 and M i = M i(t, x, u) we can still define hyperbol-
icity in the same way by linearizing around a background solution û(t, x) and
considering the local form of the matrices M i, and we can also show that strong
and symmetric hyperbolicity implies well-posedness. The main difference is that
now we can only show that solutions exist locally in time, as after a finite time
singularities in the solution may develop (e.g. shock waves in hydrodynamics,
or spacetime singularities in relativity). Also, the energy norm does not remain
constant in time but rather grows at a rate that can be bounded independently
of the initial data. A particularly important sub-case is that of quasi-linear sys-
tems of equations where we have two different sets of variables u and v such
that derivatives in both space and time of the u’s can always be expressed as
(possibly non-linear) combinations of v’s, and the v’s evolve though equations of
the form ∂tv + M i(u) ∂iv = s(u, v), with the matrices M i functions only of the
u’s. In such a case we can bring the u’s freely in and out of derivatives in the
evolution equations of the v without changing the principal part by replacing all
derivatives of u’s in terms of v’s, and all the theory presented here can be ap-
plied directly. As we will see later, the Einstein field equations have precisely this
property, with the u’s representing the metric coefficients (lapse, shift and spatial
metric) and the v’s representing both components of the extrinsic curvature and
spatial derivatives of the metric.

First order systems of equations of type (5.3.1) are often written instead as

∂tu + ∂iF
i(u) = s(u) , (5.3.13)

where F i are vector valued functions of the u’s (and possibly the spacetime
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better alternative would be to evolve the quantity Ṽ i := Γ̃i − 8 γ̃ik∂kφ, instead
of the Γ̃i, because it propagates along time lines and would therefore require no
boundary condition in the case of zero shift). Far worse, however, would be to
impose a radiative boundary condition on the spatial derivatives of the γ̃ij , since
in that case we would be giving boundary data for outgoing fields as well. But
as already mentioned, this is not done when we works with evolution equations
that are second order in space.

5.9.2 Maximally dissipative boundary conditions

Let us now go back to the issue of finding well-posed boundary conditions for
a symmetric hyperbolic system of equations. The restriction to symmetric hy-
perbolic systems is important in order to be able to prove well-posedness. For
systems that are only strongly hyperbolic but not symmetric, like BSSNOK,
no rigorous results exist about the well-posedness of the initial-boundary value
problem. We then start by considering, as before, an evolution system of the
form

∂tu + M i∂iu = 0 , (5.9.11)

where the matrices M i are constant, and the domain of dependence of the solu-
tion is restricted to the region 
x ∈ Ω. Let us now construct the principal symbol
P (ni) := M ini, with ni an arbitrary unit vector. We will assume that the system
is symmetric hyperbolic, which implies that there exists a symmetrizer H , inde-
pendent of the vector ni, that is a Hermitian matrix such that HP − PT H = 0.
Consider now the energy norm

E(t) =
∫
Ω

u†Hu dV . (5.9.12)

Taking a time derivative of this energy we find

dE

dt
= −

∫
Ω

[
(∂iu

†)M iT Hu + u†HM i(∂iu)
]
dV

= −
∫
Ω

[
(∂iu

†)HM iu + u†HM i(∂iu)
]
dV

= −
∫
Ω

∂i

(
u†HM iu

)
dV , (5.9.13)

where in the second line we used the fact that H is the same symmetrizer for all
ni, which in particular means that all three matrices HM i are symmetric. This
is precisely the place where the assumption that we have a symmetric hyperbolic
system becomes essential. Using now the divergence theorem we finally find

dE

dt
= −

∫
∂Ω

(
u†HM iu

)
ni dA = −

∫
∂Ω

(
u†HP (
n)u

)
dA , (5.9.14)

where ∂Ω is the boundary of Ω, 
n and dA are the normal vector to the boundary
and its corresponding area element, and P (
n) = M ini is the symbol associated
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with 
n. In contrast to what we have done before, we will now not assume that the
surface integral above vanishes. Instead, we now make use of equation (5.3.6):

HP = (R−1)T R−1P = (R−1)T ΛR−1 , (5.9.15)

with R the matrix of column eigenvectors of P (
n) and Λ = diag(λi) the matrix
of corresponding eigenvalues. We can therefore rewrite the change in the energy
norm as

dE

dt
= −

∫
∂Ω

(
u†(R−1)T ΛR−1u

)
dA = −

∫
∂Ω

(
w†Λw

)
dA , (5.9.16)

where w := R−1u are the eigenfields. Let w+, w−, w0 now denote the eigenfields
corresponding to eigenvalues of P (
n) that are positive, negative and zero re-
spectively, i.e. eigenfields that propagate outward, inward, and tangential to the
boundary respectively.57 We then find

dE

dt
= −

∫
∂Ω

(
w†
+Λ+w+

)
dA −

∫
∂Ω

(
w†

−Λ−w−
)

dA

=
∫

∂Ω

(
w†

− |Λ−|w−
)

dA −
∫

∂Ω

(
w†
+ |Λ+|w+

)
dA , (5.9.17)

with Λ+ and Λ− the sub-matrices of positive and negative eigenvalues. We clearly
see that the first term in the last expression is always positive, while the second
term is always negative. This shows that outward propagating fields (those with
positive speed) reduce the energy norm since they are leaving the region Ω, while
inward propagating modes (those with negative speed) increase it since they are
coming in from the outside.

Assume that we now impose a boundary condition of the following form

w−|∂Ω = S w+|∂Ω , (5.9.18)

with S some matrix that relates incoming fields at the boundary to outgoing
ones. We then have

dE

dt
=
∫

∂Ω

(
w†
+ST |Λ−|S w+

)
dA −

∫
∂Ω

(
w†
+ |Λ+|w+

)
dA

=
∫

∂Ω

[
w†
+

(
ST |Λ−|S − |Λ+|

)
w+

]
dA . (5.9.19)

From this we clearly see that if we take S to be “small enough” in the sense
that w†

+ST |Λ−|S w+ ≤ w†
+ |Λ+| w+, then the energy norm will not increase

57We should be careful with the interpretation of w+ and w−, because in many references we
find their meaning reversed. This comes from the fact that we often find the evolution system
written as ∂tu = M i∂iu instead of the form ∂tu + M i∂iu = 0 used here, which of course
reverses the signs of all the matrices and in particular of the matrix of eigenvalues Λ.
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with time and the full system including the boundaries will remain well-posed.
Boundary conditions of this form are known as maximally dissipative [185]. The
particular case S = 0 corresponds to saying that the incoming fields vanish, and
this results in a Sommerfeld-type boundary condition. This might seem the most
natural condition, but it is in fact not always a good idea, as we might find that
in order to reproduce the physics correctly (e.g. to satisfy the constraints) we
might need to have some non-zero incoming fields at the boundary.

We can in fact generalize the above boundary condition somewhat to allow
for free data to enter the domain. We can then take a boundary condition of the
form

w−|∂Ω = S w+|∂Ω + g(t) , (5.9.20)

where g(t) is some function of time that represents incoming radiation at the
boundary, and where as before we ask for S to be small. In this case we are
allowing the energy norm to grow with time, but in a way that is bounded by
the integral of |g(t)| over the boundary, so the system remains well-posed. In the
same way we can also allow for the presence of source terms on the right hand
side of the evolution system (5.9.11).

As a simple example of the above results we will consider again the wave
equation in spherical symmetry

∂2t ϕ − v2
(

∂2rϕ +
2
r

∂rϕ

)
= 0 . (5.9.21)

Introducing the first order variables Π := ∂tϕ and Ψ := v∂rϕ, the wave equation
can be reduced to the system

∂tϕ = Π , (5.9.22)

∂tΠ = v∂rΨ +
2v

r
Π , (5.9.23)

∂tΨ = v∂iΠ . (5.9.24)

The system above is clearly symmetric hyperbolic, with eigenspeeds {0,±v} and
corresponding eigenfields

w0 = ϕ , w± = Π ∓ Ψ . (5.9.25)

Let us consider now the maximally dissipative boundary conditions at a
sphere of radius r = R. These boundary conditions have the form

w− = Sw+ + g(t) . (5.9.26)

The requirement for S to be small now reduces simply to S2 ≤ 1. We will consider
three particular cases:
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• S = −1. This implies Π+Ψ = −(Π−Ψ)+g(t), or in other words Π = g(t)/2.
Since Π = ∂tϕ, this boundary condition fixes the evolution of ϕ at the
boundary, so it corresponds to a boundary condition of Dirichlet type. The
particular case g = 0 results in a standard reflective boundary condition,
where the sign of ϕ changes as it reflects from the boundary.

• S = +1. This now implies Ψ = g(t)/2, which fixes the evolution of the
spatial derivative of the wave function ϕ and corresponds to a boundary
condition of Newmann type. Again, the case g = 0 corresponds to reflec-
tion, but preserving the sign of ϕ.

• S = 0. In this case we have Π + Ψ = g(t), or in terms of the wave function
∂tϕ + v∂rϕ = g(t). This is therefore a boundary condition of Sommerfeld
type.

From the expressions for dE/dt given above, it is easy to see that the choices
S = ±1 with g = 0 imply that the energy norm is preserved (all the energy
that leaves the domain through the outgoing modes comes back in through the
incoming modes), so the wave is reflected at the boundary. Notice also that in
the Sommerfeld case S = 0 we have not quite recovered the radiative boundary
condition of the previous Section. But this is not a serious problem and only
reflects the fact that we have excluded the source terms from all of our analysis.
However, it does show that in many cases we need to consider a more general
boundary condition of the form

w−|∂Ω = (S+w+ + S0w0)|∂Ω + g(t) . (5.9.27)

5.9.3 Constraint preserving boundary conditions

As discussed in the previous Section, the use of maximally dissipative boundary
conditions for a symmetric hyperbolic system is crucial if we wish to have a
well-posed initial-boundary value problem. However, this is not enough in the
case of the 3+1 evolution equations since well-posed boundary conditions can
still introduce a violation of the constraints that will then propagate into the
computational domain at essentially the speed of light (the specific speed will
depend on the form of the evolution equations used). We then have to worry
about finding boundary conditions that are not only well-posed, but at the same
time are compatible with the constraints. In a seminal work [133], Friedrich and
Nagy have shown for the first time that it is possible to find a well-posed initial-
boundary value formulation for the Einstein field equations that preserves the
constraints. Their formulation, however, is based on the use of an orthonormal
tetrad and takes as dynamical variables the components of the connection and
the Weyl curvature tensor, so it is very different from most 3+1 formulations
that evolve the metric and extrinsic curvature directly. It is therefore not clear
how to apply their results to these standard “metric” formulations.

In the past few years, there have been numerous investigations related to the
issue of finding well-posed constraint preserving boundary conditions [40, 61, 87,
88, 89, 137, 138, 154, 174, 191, 251, 278, 279, 280]. Here we will just present the



  

Preliminaries

● Initial value problem for ordinary differential equations (ODEs)

● Assume we have a coupled system of ODEs (u = vector of 
unknown variables)

● Find u(t)?

● Recast system as

d2u
dt 2 =F (u) , u (0)=u0,u ' (0)=v0

dv
dt

=F (u) ,
du
dt

=v ,

u(0)=u0,v (0)=v0



  

Preliminaries

● Euler: simple first-order accurate (in     ) integration method 

● Denoting                             , approximate derivative as 

● Then:

(
du
dt

)
n

=
un+1

−un

Δt

un
=u (n⋅Δt )

un+1
=un

+Δt vn

Δt

dv
dt

=F (u)
du
dt

=v ,

v n+1
=vn

+Δt F(un
)

n+1

n
u,v
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● Leap frog: simple second-order accurate (in     ) integration 
method 

● Approximate derivative as 

● Then:

(
du
dt

)
n

=
un+1

−un−1

2 Δt

un+1
=un−1

+2 Δt vn

Δt

dv
dt

=F (u)
du
dt

=v ,

v n+1=vn−1+2 Δt F (un)

n+1

n

n-1

u,v

u,v



  

Preliminaries

● In general we will have to solve

● Leapfrog simple but, there are better, more accurate (higher-
order) and more stable numerical schemes

● Examples: Runge-Kutta (RK) 2nd, 3rd, 4th order

              RK3                                                    RK4

du
dt

=F (u) , u(0)=u0

un+1
=un

+
k1

4
+

3k3

4

k1=Δt F (un
)

k 2=Δt F (un
+k1/3)

un+1
=un

+
k1

6
+

k2

3
+

k3

3
+

k 4

6

k1=Δt F (un
)

k 2=Δt F (un
+k1/2)

k 3=Δt F (un
+k 2/2)

k 4=Δt F (un
+k3)

k 3=Δt F (un
+2k 2/3)



  

Preliminaries

● Solving the initial value problem for partial differential equations 
(PDEs)

● In general we will have to solve

● The concept of the method of lines

– Discretize the spatial derivatives 

– Find a numerical approximation        to the function 

– Treat                       as a large number of ODEs (one for

 each spatial cell) and use your favorite ODE solver.

∂u
∂ t

=F(u ,∂i u ,∂i ∂ j u , ...) , u(0,x i
)=u0, i=1,2,3

FN F

∂u
∂ t

=FN



Why Finite Differencing?

• There are several general approaches to the numerical solution of time
dependent PDEs, including

1. Finite differences
2. Finite volume
3. Finite elements
4. Spectral

• Finite difference (FD) methods are particularly appropriate when the solution is
expected to be smooth “(infinitely differentiable“) given that the initial data is
smooth

• This is the case for many classical field theories including those for a scalar
(linear/nonlinear Klein Gordon), vector (electromagnetism [Maxwell]), rank-2
symmetric tensor (general relativity [Einstein])

• In cases where solutions do not remain smooth, even if the initial data is—as
happens in compressible hydrodynamics, for example, where shocks can

7

form -- the finite volume approach is the method of choice (Wednesday)



Why Finite Differencing?

• Accessibility: Requires a minimum of mathematical background: if you’re
mathematically mature enough to understand the nature of the PDEs you need
to solve, you’re mathematically mature enough to understand finite differencing

• Flexibility: Technique can be used for essentially any system of PDEs that has
smooth solutions, irrespective of

• Number of dependent variables (unknown functions)

• Number of independent variables (a.k.a. “dimensionality” of the system:
nomenclature “1-D” means dependence on one spatial dimension plus time,
“2-D”, “3-D” similarly mean dependence on two/three dimensions, plus
time, respectively)

• Nonlinearity

• Form of equations: technique does not require that the system of equations
has any particular/special form (contrast with finite volume methods where
one generally wants to cast the equations in so-called conservation-law form)

8



Why Finite Differencing?

• Error analysis:

• Mathematically rigorous: Quite difficult

• Practical/empirical: Extremely straightforward—basic principle is to compute
multiple solutions using same initial data and problem parameters, but
differing fundamental discretization scales. Comparison of solutions provides
direct estimate of error in solutions

• Adaptivity: Can combine basic method with changes in

• Local scale of discretization

• Order of approximation

in order to maximize increase in solution accuracy as a function of
computational work invested (e.g. adaptive mesh refinement, week 3)

• Parallelization: Due to “locality of influence” in finite difference schemes, it is
relatively easy to write FD codes than run efficiently on large distributed
memory computer clusters having 1000s or cores (these days 10,000s or even
100,000s!)
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Why Finite Differencing?

• Sufficiency: FD techniques are often sufficient to generate solutions of
acceptable accuracy, again assuming that solutions are smooth

• Will usually not be the most efficient and/or accurate among possible
approaches, but when one is looking for a solution for the first time (science
vs engineering/technology), such considerations are often not very important

• Now proceed to illustration of finite difference technique through the solution
of the simple and familiar 1-D wave equation

10



1. Mathematical Formulation
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The 1-D Wave Equation

• Consider the following initial value (Cauchy) problem for the scalar function
φ(t, x)

φtt = c2φxx , −∞ ≤ x ≤ ∞ , t ≥ 0 (1)

φ(0, x) = φ0(x) (2)

φt(0, x) = Π0(x) (3)

where c is a positive constant, we have adopted the subscript notation for
partial differentiation, e.g. φtt ≡ ∂2φ/∂t2, and we wish to determine φ(t, x) in
the solution domain from the initial conditions (2–3) and the governing
equation (1)

• Note the following:

• Since the spatial domain is unbounded, there are no boundary conditions

• Since the equation is second order in time, two functions-worth of initial data
must be specified: the initial scalar field profile, φ0(x), and the initial time
derivative, Π0(x)
• This system is well posed, and if the initial conditions φ0(x) and Π0(x) are

smooth—which we will hereafter assume—so is the complete solution φ(t, x)
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The 1-D Wave Equation

• Eqn. (1) is a hyperbolic PDE, and as such, its solutions generically describe the
propagation of disturbances at some finite speed(s), which in this case is c

• Without loss of generality, we can assume that we have adopted units in which
this speed satisfies c = 1. Our problem then becomes

φtt = φxx , −∞ ≤ x ≤ ∞ , t ≥ 0 (4)

φ(0, x) = φ0(x) (5)

φt(0, x) = Π0(x) (6)

• In the study of the solutions of hyperbolic PDEs, using either closed form
(preferred to “analytic”) or numerical approaches, the concept of characteristic
is crucial

• Loosely, in a spacetime diagram, characteristics are the lines/surfaces along
which information/signals propagate(s).

13



The 1-D Wave Equation

t

: "left−directed" characteristics,      x + t  =  constant  ,   l(x + t) 

: "right−directed" characteristics,    x − t  =  constant  ,  r(x − t)  

x

• General solution of (4) is a superposition of an arbitrary left-moving profile
(v = −c = −1), and an arbitrary right-moving profile (v = +c = +1); i.e.

φ(t, x) = `(x+ t) + r(x− t) (7)

where

` : constant along “left-directed” characteristics

r : constant along “right-directed” characteristics
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The 1-D Wave Equation

• Observation provides alternative way of specifying initial values—often
convenient in practice

• Rather than specifying u(x, 0) and ut(x, 0) directly, specify initial left-moving
and right-moving parts of the solution, `(x) and r(x)

• Specifically, set

φ(x, 0) = `(x) + r(x) (8)

φt(x, 0) = `′(x)− r′(x) ≡ d`

dx
(x)− dr

dx
(x) (9)

• For illustrative purposes will frequently take profile functions φ0(x), `(x), r(x)
to be “gaussians”, e.g.

φ0(x) = A exp
[
− ((x− x0) /δ)2

]
(10)

where A, x0 and δ are viewed as adjustable parameters that control the overall
size/height of the profile (A), its centre point (x0) and its effective width (δ)

15



2. Discretization
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Deriving Finite Difference Formulae

• Essence of finite-difference approximation of a PDE:

• Replacement of the continuum by a discrete lattice of grid points

• Replacement of derivatives/differential operators by finite-difference
expressions

• Finite-difference expressions (finite-difference quotients) approximate the
derivatives of functions at grid points, using the grid values themselves. All
operators and expressions needed here can easily be worked out using Taylor
series techniques.

• Example: Consider task of approximating the first derivative ux(x) of a
function u(x), given a discrete set of values uj ≡ u(jh)

17



Deriving Finite Difference Formulae

∆x

j − 1 j j + 1

x  = x   +  j ∆x  = x   +  j h 
j 0 0

• One-dimensional, uniform finite difference mesh.

• Note that the spacing, ∆x = h, between adjacent mesh points is constant.

• Will tacitly assume that the origin, x0, of coordinate system is x0 = 0.
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Deriving Finite Difference Formulae

• Given the three values u(xj − h), u(xj) and u(xj + h), denoted uj−1, uj, and
uj+1 respectively, can compute an O(h2) approximation to ux(xj) ≡ (ux)j as
follows

• Taylor expanding, have

uj−1 = uj − h(ux)j +
1
2
h2(uxx)j −

1
6
h3(uxxx)j +

1
24
h4(uxxxx)j +O(h5)

uj = uj

uj+1 = uj + h(ux)j +
1
2
h2(uxx)j +

1
6
h3(uxxx)j +

1
24
h4(uxxxx)j +O(h5)

• Now seek a linear combination of uj−1, uj, and uj+1 which yields (ux)j to
O(h2) accuracy, i.e. we seek c−, c0 and c+ such that

c− uj−1 + c0 uj + c+ uj+1 = (ux)j +O(h2)
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Deriving Finite Difference Formulae

• Results in a system of three linear equations for uj−1, uj, and uj+1:

c− + c0 + c+ = 0

−hc− + hc+ = 1
1
2
h2c− +

1
2
h2c+ = 0

which has the solution

c− = − 1
2h

c0 = 0

c+ = +
1

2h

• Thus, O(h2) FDA (finite difference approximation) for the first derivative is

u(x+ h)− u(x− h)
2h

= ux(x) +O(h2) (11)
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Deriving Finite Difference Formulae

• May not be obvious a priori, that the truncation error of approximation is O(h2)

• Naive consideration of the number of terms in the Taylor series expansion
which can be eliminated using 2 values (namely u(x+ h) and u(x− h))
suggests that the error might be O(h).

• Fact that the O(h) term “drops out” a consequence of the symmetry, or
centering of the stencil: common theme in such FDA, called centred difference
approximations

• Using same technique, can easily generate O(h2) expression for the second
derivative, which uses the same difference stencil as the above approximation
for the first derivative.

u(x+ h)− 2u(x) + u(x− h)
h2

= uxx(x) +O(h2) (12)

• Exercise: Compute the precise form of the O(h2) terms in expressions (11)
and (12).
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Sample FDA for the 1-D Wave Equation

• Let us consider the 1-D wave equation again, but this time on the finite spatial
domain, 0 ≤ x ≤ 1, where we will prescribe fixed (Dirichlet) boundary
conditions

• Then we wish to solve

φtt = φxx (c = 1) 0 ≤ x ≤ 1, t ≥ 0 (13)

φ(0, x) = φ0(x)

φt(0, x) = Π0(x)

φ(t, 0) = φ(t, 1) = 0 (14)

• We will again require that the initial data functions, φ0(x) and Π0(x) be
smooth

• Moreover, in order to ensure a smooth solution everywhere, the initial values
must be compatible with the boundary conditions, i.e.

φ0(0) = φ0(1) = Π0(0) = Π0(1) = 0 (15)
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Sample FDA for the 1-D Wave Equation

• As always, we begin the discretization process by replacing the continuum
solution domain with a finite difference mesh, whose typical element
(point/event) we will denote by (xj, t

n):

t
n ≡ n4t , n = 0, 1, 2, · · ·
xj ≡ (j − 1) 4x , j = 1, 2, · · · J

φ
n
j ≡ φ(n4t , (j − 1)4x )

4x = (J − 1)−1

4t = λ4x λ ≡ “Courant number”

• We note in passing that the quantity λ defined above is often called the
Courant number or Courant factor, after the great 20th century mathematician
Richard Courant who was a pioneer in the study of finite difference solutions of
time dependent PDEs (in particular, in the use of FD techniques to establish
existence and uniqueness of such PDEs) )
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Uniform Grid for 1-D Wave Equation

j − 1 j j + 1

∆x

∆t

t

x

• When solving wave equations using FDAs, typically keep λ constant when 4x
varied.

• FDA will always be characterized by the single discretization scale, h.

4x ≡ h

4t ≡ λh
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FDA for 1-D Wave Equation

• Discretized Interior equation

(4t )−2
(
φ

n+1
j − 2φn

j + φ
n−1
j

)
= (φtt)

n
j +

1
12
4t 2 (φtttt)

n
j +O(4t 4)

= (φtt)
n
j +O(h2)

(4x )−2
(
φ

n
j+1 − 2φn

j + φ
n
j−1

)
= (φxx) n

j +
1
12
4x 2 (φxxxx) n

j +O(4x 4)

= (φxx) n
j +O(h2)

Putting these two together, get O(h2) approximation

φn+1
j − 2φn

j + φn−1
j

4t 2
=
φn

j+1 − 2φn
j + φn

j−1

4x 2
j = 2, 3, · · · , J − 1 (16)

• Scheme such as (16) often called a three level scheme since couples three “time
levels” of data (i.e. unknowns at three distinct, discrete times tn−1, tn, tn+1.
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FDA for 1-D Wave Equation

• Discretized Boundary conditions

φ
n+1
1 = φ

n+1
J = 0

• Discretized Initial conditions

• Need to specify two “time levels” of data (effectively φ(x, 0) and φt(x, 0)),
i.e. we must specify

φ
0
j , j = 1, 2, · · · , J

φ
1
j , j = 1, 2, · · · , J

ensuring that the initial values are compatible with the boundary conditions.

• Can solve (16) explicitly for φn+1
j :

φ
n+1
j = 2φn

j − φ
n−1
j + λ2

(
φ

n
j+1 − 2φn

j + φ
n−1
j

)
(17)
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Stencil for “Standard” O(h2) Approximation of 1-D
Wave Equation

n

n + 1

n − 1

j − 1 j j + 1
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FDA for 1-D Wave Equation

• Also note that (17) is actually a linear system for the unknowns
φn+1

j , j = 1, 2, · · · , J ; in combination with the discrete boundary conditions
can write

A φn+1 = b (18)

where A is a diagonal J × J matrix and φn+1 and b are vectors of length J .

• Such a difference scheme for an IVP is called an explicit scheme.
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FDAs: Back to the Basics—Concepts & Definitions

• Will be considering the finite-difference approximation (FDA) of PDEs-0—will
generally be interested in the continuum limit, where the mesh spacing, or grid
spacing, usually denoted h, tends to 0.

• Because any specific calculation must necessarily be performed at some
specific, finite value of h, we will also be (extremely!) interested in the way
that our discrete solution varies as a function of h.

• Will always view h as the basic “control” parameter of a typical FDA.

• Fundamentally, for sensibly constructed FDAs, we expect the error in the
approximation to go to 0, as h goes to 0.
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Some Basic Concepts, Definitions and Techniques

• Let
Lu = f (54)

denote a general differential system.

• For simplicity, concreteness, can think of u = u(x, t) as a single function of one
space variable and time,

• Discussion applies to cases in more independent variables
(u(x, y, t), u(x, y, z, t) · · · etc.), as well as multiple dependent variables
(u = u = [u1, u2, · · · , un]).

• In (54), L is some differential operator (such as ∂tt− ∂xx) in our wave equation
example), u is the unknown, and f is some specified function (frequently called
a source function) of the independent variables.
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Some Basic Concepts, Definitions and Techniques

• Here and in the following, will sometimes be convenient use notation where a
superscript h on a symbol indicates that it is discrete, or associated with the
FDA, rather than the continuum.

• With this notation, we will generically denote an FDA of (54) by

Lhuh = fh (55)

where uh is the discrete solution, fh is the specified function evaluated on the
finite-difference mesh, and Lh is the finite-difference approximation of L.
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Residual

• Note that another way of writing our FDA is

Lhuh − fh = 0 (56)

• Often useful to view FDAs in this form for following reasons

• Have a canonical view of what it means to solve the FDA—“drive the
left-hand side to 0”.

• For iterative approaches to the solution of the FDA (which are common,
since it may be too expensive to solve the algebraic equations directly), are
naturally lead to the concept of a residual.

• Residual is simply the level of “non-satisfaction” of our FDA (and, indeed, of
any algebraic expression).

• Specifically, if ũh is some approximation to the true solution of the FDA, uh,
then the residual, rh, associated with ũh is just

rh ≡ Lhũh − fh (57)

• Leads to the view of a convergent, iterative process as being one which “drives
the residual to 0”.
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Truncation Error

• Truncation error, τh, of an FDA is defined by

τh ≡ Lhu− fh (58)

where u satisfies the continuum PDE (54).

• Note that the form of the truncation error can always be computed (typically
using Taylor series) from the finite difference approximation and the differential
equations.
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Convergence

• Assume FDA is characterized by a single discretization scale, h,

• we say that the approximation converges if and only if

uh → u as h→ 0. (59)

• In practice, convergence is clearly our chief concern as numerical analysts,
particularly if there is reason to suspect that the solutions of our PDEs are
good models for real phenomena.

• Note that this is believed to be the case for many interesting problems in
general relativistic astrophysics—the two black hole problem being an excellent
example.
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Consistency

• Assume FDA with truncation error τh is characterized by a single discretization
scale, h,

• Say that the FDA is consistent if

τh → 0 as h→ 0. (60)

• Consistency is obviously a necessary condition for convergence.
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Order of an FDA

• Assume FDA is characterized by a single discretization scale, h

• Say that the FDA is p-th order accurate or simply p-th order if

lim
h→0

τh = O(hp) for some integer p (61)
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Solution Error

• Solution error, eh, associated with an FDA is defined by

eh ≡ u− uh (62)
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Relation Between Truncation Error and Solution
Error

• Common to tacitly assume that

τh = O(hp) −→ eh = O(hp)

• Assumption is often warranted, but is extremely instructive to consider why it is
warranted and to investigate (following Richardson 1910 (!)) in some detail the
nature of the solution error.

• Will return to this issue in more detail later.
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Error Analysis and Convergence Tests

• Discussion here applies to essentially any continuum problem which is solved
using FDAs on a uniform mesh structure.

• In particular, applies to the treatment of ODEs and elliptic problems

• For such problems convergence is often easier to achieve due to fact that the
FDAs are typically intrinsically stable

• Also note that departures from non-uniformity in the mesh do not, in general,
complete destroy the picture: however, do tend to distort it in ways that are
beyond the scope of these notes.

• Difficult to overstate importance of convergence studies
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Richardson Ansatz

● Key idea behind error analysis: The Richardson ansatz: Appeal to L.F. 
Richardson’s old observation (ansatz), that the solution     of any FDA 
which

1. Uses a uniform mesh structure with scale parameter h,

2. Is completely centered

should have the following expansion in the limit h → 0:
●                                                                           (72)
● Here u is the continuum solution, while     ,      , · · · are (continuum) error

functions which do not depend on h.
● The Richardson expansion (72), is the key expression from which almost 

all error analysis of FDAs derives.

uh

uh
(x , t )=u (x ,t )+h2 e2(x , t)+h4 e4( x , t) ...

e2 e4



Convergence Tests

• A simple example of a convergence test, and one commonly used in practice is
as follows.

• Compute three distinct FD solutions uh, u2h, u4h at resolutions h, 2h and 4h
respectively, but using the same initial data (as naturally expressed on the 3
distinct FD meshes).

• Also assume that the finite difference meshes “line up”, i.e. that the 4h grid
points are a subset of the 2h points which are a subset of the h points

• Thus, the 4h points constitute a common set of events (xj, t
n) at which

specific grid function values can be directly (i.e. no interpolation required) and
meaningfully compared to one another.
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Convergence Tests
• From the Richardson ansatz (72), expect:

uh = u+ h2e2 + h4e4 + · · ·
u2h = u+ (2h)2e2 + (2h)4e4 + · · ·
u4h = u+ (4h)2e2 + (4h)4e4 + · · ·

• Then compute a quantity Q(t), which will call a convergence factor, as follows:

Q(t) ≡ ‖u
4h − u2h‖x
‖u2h − uh‖x

(78)

where ‖ · ‖x is any suitable discrete spatial norm, such as the `2 norm, ‖ · ‖2:

‖uh‖2 =

J−1
J∑

j=1

(
uh

j

)21/2

(79)

• Subtractions in (78) can be taken to involve the sets of mesh points which are
common between u4h and u2h, and between u2h and uh.
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Convergence Tests

• Is simple to show that, if the FD scheme is converging, then should find:

lim
h→0

Q(t) = 4. (80)

• In practice, can use additional levels of discretization, 8h, 16h, etc. to extend
this test to look for “trends” in Q(t) and, in short, to convince oneself (and,
with luck, others), that the FDA really is converging.

• Additionally, once convergence of an FDA has been established, then point-wise
subtraction of any two solutions computed at different resolutions, immediately
provides an estimate of the level of error in both.

• For example, if one has uh and u2h, then, again by the Richardson ansatz have

u2h − uh =
((
u+ (2h)2e2 + · · ·

)
−
(
u+ h2e2 + · · ·

))
(81)

= 3h2e2 +O(h4) ∼ 3eh ∼ 3
4
e2h (82)
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Richardson Extrapolation

• Richardson extrapolation: Richardson’s observation (72) also provides the basis
for all the techniques of Richardson extrapolation

• Solutions computed at different resolutions are linearly combined so as to
eliminate leading order error terms, providing more accurate solutions.

• As an example, given uh and u2h which satisfy (72), can take the linear
combination

ūh ≡ 4uh − u2h

3
(83)

which, by (72), is easily seen to be O(h4), i.e. fourth-order accurate!

ūh ≡ 4uh − u2h

3
=

4
(
u+ h2e2 + h4e4 + · · ·

)
−
(
u+ 4h2e2 + 16h4e4 + · · ·

)
3

= −4h4e4 +O(h6) = O(h4) (84)
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Richardson Extrapolation

• When it works, Richardson extrapolation has an almost magical quality about it

• However, generally have to start with fairly accurate (on the order of a few %)
solutions in order to see the dramatic improvement in accuracy suggested
by (84).

• Still a struggle to achieve that sort of accuracy (i.e. a few %) for any
computation in many areas of numerical relativity/astrophysics and keep the
error smooth (which is necessary for Richardson extrapolation to be effective)

• Thus, techniques based on Richardson extrapolation have not had a major
impact in this context, although higher-order O(h4), O(h6) etc. finite
difference methods are increasingly common for the vacuum Einstein equations
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Independent Residual Evaluation

• Question that often arises in convergence testing: is the following:

“OK, you’ve established that uh is converging as h→ 0, but how do you
know you’re converging to u, the solution of the continuum problem?”

• Here, notion of an independent residual evaluation is very useful.

• Idea is as follows: have continuum PDE

Lu− f = 0 (85)

and FDA
Lhuh − fh = 0 (86)

• Assume that uh is apparently converging from, for example, computation of
convergence factor (78) that looks like it tends to 4 as h tends to 0.

• However, do not know if we have derived and/or implemented our discrete
operator Lh correctly.
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Independent Residual Evaluation

• Note that implicit in the “implementation” is the fact that, particularly for
multi-dimensional and/or implicit and/or multi-component FDAs, considerable
“work” (i.e. analysis and coding) may be involved in setting up and solving the
algebraic equations for uh.

• As a check that solution is converging to u, consider a distinct (i.e.
independent) discretization of the PDE:

L̃hũh − fh = 0 (87)

• Only thing needed from this FDA for the purposes of the independent residual
test is the new FD operator L̃h.

• As with Lh, can expand L̃h in powers of the mesh spacing:

L̃h = L+ h2E2 + h4E4 + · · · (88)

where E2, E4, · · · are higher order (involve higher order derivatives than L)
differential operators.
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Independent Residual Evaluation

• Now simply apply the new operator L̃h to our FDA uh and investigate what
happens as h→ 0.

• If uh is converging to the continuum solution, u, will have

uh = u+ h2e2 +O(h4) (89)

and will compute

L̃huh =
(
L+ h2E2 +O(h4)

) (
u+ h2e2 +O(h4)

)
(90)

= Lu+ h2(E2 u+ Le2) (91)

= O(h2) (92)

• That is L̃huh will be a residual-like quantity that converges quadratically as
h→ 0.
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Stability Analysis
• One of the most frustrating/fascinating features of FD solutions of time

dependent problems: discrete solutions often “blow up”—e.g. floating-point
overflows are generated at some point in the evolution

• ‘Blow-ups” can sometimes be caused by legitimate (!) “bugs”—i.e. an
incorrect implementation—at other times it is simply the nature of the FD
scheme which causes problems.

• Are thus lead to consider the stability of solutions of difference equations

• Again consider the 1-d wave equation, utt = uxx

• Note that it is a linear, non-dispersive wave equation

• Thus the “size” of the solution does not change with time:

‖u(x, t)‖ ∼ ‖u(x, 0)‖ , (95)

where ‖ · ‖ is an suitable norm, such as the L2 norm:

‖u(x, t)‖ ≡
(∫ 1

0

u(x, t)2 dx
)1/2

. (96)
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Stability Analysis

• Will use the property captured by (95) as working definition of stability.

• In particular, if you believe (95) is true for the wave equation, then you believe
the wave equation is stable.

• Fundamentally, if FDA approximation converges, then expect the same
behaviour for the difference solution:

‖un
j ‖ ∼ ‖u

0
j‖ . (97)

• FD solution constructed by iterating in time, generating

u
0
j , u

1
j , u

2
j , u

3
j , u

4
j , · · ·

in succession, using the FD equation

u
n+1
j = 2un

j − u
n−1
j + λ2

(
u

n
j+1 − 2un

j + u
n
j−1

)
.
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Stability Analysis

• Not guaranteed that (97) holds for all values of λ ≡ 4t /4x .

• For certain λ, have
‖un

j ‖ � ‖u
0
j‖ ,

and for those λ, ‖un‖ diverges from u, even (especially!) as h→ 0—that is,
the difference scheme is unstable.

• For many wave problems (including all linear problems), given that a FD
scheme is consistent (i.e. so that τ̂ → 0 as h→ 0), stability is the necessary
and sufficient condition for convergence (Lax’s theorem).

75



Heuristic Stability Analysis

• Write general time-dependent FDA in the form

un+1 = G[un] , (98)

• G is some update operator (linear in our example problem)

• u is a column vector containing sufficient unknowns to write the problem in
first-order-in-time form.

• Example: introduce new, auxiliary set of unknowns, vn
j , defined by

v
n
j = u

n−1
j ,

then can rewrite differenced-wave-equation (16) as

u
n+1
j = 2un

j − v
n
j + λ2

(
u

n
j+1 − 2un

j + u
n
j−1

)
, (99)

v
n+1
j = u

n
j , (100)
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Heuristic Stability Analysis

• Thus with
un = [un

1 , v
n
1 , u

n
2 , v

n
2 , · · · u

n
J , v

n
J ] ,

(for example), (99-100) is of the form (98).

• Equation (98) provides compact way of describing the FDA solution.

• Given initial data, u0, solution after n time-steps is

un = Gnu0
, (101)

where Gn is the n-th power of the matrix G.

• Assume that G has a complete set of orthonormal eigenvectors

ek, k = 1, 2, · · · J ,

and corresponding eigenvalues

µk, k = 1, 2, · · · J ,
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Heuristic Stability Analysis

• Thus have
Gek = µk ek, k = 1, 2, · · · J .

• Can then write initial data as (spectral decomposition):

u0 =
J∑

k=1

c
0
k ek ,

where the c0k are coefficients.

• Using (101), solution at time-step n is

un = Gn

(
J∑

k=1

c
0
k ek

)
(102)

=
J∑

k=1

c
0
k (µk)n ek . (103)
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Heuristic Stability Analysis

• If difference scheme is to be stable, must have

|µk| ≤ 1 k = 1, 2, · · · J (104)

(Note: µk will be complex in general, so |µ| denotes the complex modulus,
|µ| ≡

√
µµ?).

• Geometric interpretation: eigenvalues of the update matrix must lie on or
within the unit circle
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Heuristic Stability Analysis
Im

Re

unit circle

• Schematic illustration of location in complex plane of eigenvalues of update
matrix G.

• In this case, all eigenvalues (dots) lie on or within the unit circle, indicating
that the corresponding finite difference scheme is stable.
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Von-Neumann (Fourier) Stability Analysis
(Summary)

• Von-Neumann (VN) stability analysis based on the ideas sketched above

• Assumes that difference equation is linear with constant coefficients, periodic
boundary conditions boundary conditions are periodic

• Can then use Fourier analysis: difference operators in real-space variable x −→
algebraic operations in Fourier-space variable k

• VN applied to wave-equation example shows that must have

λ ≡ 4t
4x
≤ 1 ,

for stability of scheme (16).

• Condition is often called the CFL condition—after Courant, Friedrichs and
Lewy who derived it in 1928

• This type of instability has “physical” interpretation, often summarized by the
statement the numerical domain of dependence of an explicit difference scheme
must contain the physical domain of dependence.
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1-D Wave Equation: 1st Order Form

• Let us again consider the 1-D wave equation, solved on the spatial domain
0 ≤ x ≤ 1, and where we will delay the specification of the boundary conditions
for the time being

• We have

φtt = φxx , 0 ≤ x ≤ 1 , t ≥ 0 (19)

φ(0, x) = φ0(x) (20)

φt(0, x) = Π0(x) (21)

• We rewrite (19) in a form that involves only first time derivatives by defining
the following auxiliary variables

Φ(t, x) ≡ φx (22)

Π(t, x) ≡ φt (23)
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1-D Wave Equation: 1st Order Form

• Using the commutativity of (mixed) partial derivatives, it is easy to show
that (19) is equivalent to the following system

Φt = Πx (24)

Πt = Φx (25)

• The initial conditions are then given by

Φ(0, x) =
d

dx
φ0(x) (26)

Π(0, x) = Π0(x) (27)

• We also note that if we are not concerned with actually computing values of
the scalar field, φ(t, x) itself (and in this treatment we will not be), then we
can equally well replace (26) with

Φ(0, x) = Φ0(x) (28)

i.e. we can specify the initial values of Φ ≡ φx directly
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1-D Wave Equation: 1st Order Form

• We now return to the issue of boundary conditions: we wish to illustrate a type
of boundary condition which is often imposed when a (pure) initial-value
problem for a hyperbolic system has been converted into an
initial-boundary-value problem by truncation of the solution domain to some
finite extent

• Thus, although we will solve the wave equation on the spatial domain
0 ≤ x ≤ 1, we want the solution to approximate the one that we would get if
we were able to solve on the unbounded domain −∞ < x <∞

• We assume that the initial conditions represent some set of disturbances which
are localized in space, well away from the boundaries x = 0 and x = 1, and
that the subsequent dynamics describes the propagation of these disturbances
in and away from the interval in which they are initially localized

• We recall that the general solution of the wave equation can be written in the
form

φ(t, x) ∼ `(x+ t) + r(x− t) (29)

where ` and r are the left- and right-moving parts of the solution, respectively
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1-D Wave Equation: 1st Order Form

• We further observe that it follows from (29) and the definitions of Φ and Π
that Φ ≡ φx and Π ≡ φt can also be written as a linear combination of right-
and left-moving pieces

• The boundary condition we now wish to employ is often called a radiation
condition, or Sommerfeld condition, and is equivalent to the demand that there
be no incoming radiation (disturbances) at the boundaries of the solution
domain

• This means that at x = 0 we must have only left-moving signals, so that
Φ(t, x) ∼ Φ(x+ t) and Π(t, x) ∼ Π(x+ t), or

Φt(t, 0) = Φx(t, 0) (30)

Πt(t, 0) = Πx(t, 0) (31)

• Similarly, at x = 1 we require only left-moving waves, so that
Φ(t, x) ∼ Φ(x− t) and Π(t, x) ∼ Π(x− t), or

Φt(t, 1) = −Φx(t, 1) (32)

Πt(t, 1) = −Πx(t, 1) (33)
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1-D Wave Equation: Crank-Nicholson Scheme

• We now discuss the Crank-Nicholson discretization scheme for the 1-D wave
equation as written in the first order form defined above: variations on this
theme will be used extensively in this week’s lectures and tutorial sessions

• We adopt the same uniform grid structure (in space and time) as previously,
but now use the stencil illustrated on the next page for our PDEs

Φt = Πx

Πt = Φx

• In our description of the Crank Nicholson FDA we will also introduce the notion
of finite difference operators, which provide a compact way of denoting many
FDAs, and which play a central role in the special purpose programming
language, RNPL, that we will use in the tutorial sessions
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Stencil for O(h2) Crank-Nicholson Approximation of
1-D Wave Equation

j

Scheme is centred at t         , x
n+1/2

j

j−1 j+1

n

n+1
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1-D Wave Equation: Crank-Nicholson Scheme

• To illustrate the scheme, it will suffice to consider one of the two first-order
PDEs that together constitute the wave equation: for specificity we focus on

Φt = Πx (34)

• The time derivative of Φ is approximated using

4t−1
(

Φn+1
j − Φn

j

)
= (Φt)

n+1
2

j +
1
24
4t 2 (Φttt)

n+1
2

j +O(4t 4) (35)

= (Φt)
n+1

2
j +O(4t 2)

• To approximate Πx, we write the usual O(h2) centred approximation for the
first derivative in operator form as

Dx Πn
j ≡ (24x )−1

(
Πn

j+1 −Πn
j−1

)
(36)

Dx = ∂x +
1
6
4x 2 ∂xxx +O(4x 4) (37)
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1-D Wave Equation: Crank-Nicholson Scheme

• We further introduce the (forward) time-averaging operator, µt:

µt u
n
j ≡ 1

2

(
u

n+1
j + u

n
j

)
= u

n+1
2

j +
1
8
4t 2 (utt)

n+1
2

j +O(4t 4) (38)

µt =
[
I +

1
8
4t 2 ∂tt +O(4t 4)

]
t=tn+1/2

(39)

where I is the identity operator.

• Assuming that 4t = O(4x ) = O(h), it is easy to show (exercise) that

µt

[
Dx Πn

j

]
= (Πx) n+1

2
j +O(h2)

• Putting above results together, we get the (O(h2)) Crank-Nicholson
approximation of Φt = Πx

Φn+1
j − Φn

j

4t
= µt

[
Dx Πn

j

]
(40)
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1-D Wave Equation: Crank-Nicholson Scheme

• Written out in full, this is

Φn+1
j − Φn

j

4t
=

1
2

[
Πn+1

j+1 −Πn+1
j−1

24x
+

Πn
j+1 −Πn

j−1

24x

]
(41)

• Note that the Crank-Nicholson scheme immediately generalizes to any equation
that can be written in the form

ut = L[u] (42)

where is L is some spatial operator. A Crank-Nicholson FDA of (42) is

un+1
j − un

j

4t
=

1
2
(
Lh
[
un+1

]
+ Lh [un]

)
(43)

where Lh is some discretization of L, not necessarily second order

• Also observe that Crank-Nicholson scheme is a two-level method (couples
unknowns at two discrete time steps)
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1-D Wave Equation: Crank-Nicholson Scheme

• The difference equations (40) can be applied at grid points labelled by
j = 2, 3, . . . , J − 1 (the interior points)

• For j = 1 and j = J we use discretized versions of the radiation (Sommerfeld)
boundary conditions

Φt(t, 0) = Φx(t, 0) (44)

Φt(t, 1) = −Φx(t, 1) (45)

• The time derivatives are approximated as previously, and for the space
derivatives we use second order, forward and backward (“off-centred”)
difference approximations defined by

DF
x Φn

j ≡ (24x )−1
(
−3Φn

j + 4Φn
j+1 − Φn

j+2

)
(46)

DF
x = ∂x +O(4x 2) exercise (47)

DB
x Φn

j ≡ (24x )−1
(

3Φn
j − 4Φn

j−1 + Φn
j−2

)
(48)

DB
x = ∂x +O(4x 2) exercise (49)
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1-D Wave Equation: Crank-Nicholson Scheme

• Employing the time-averaging operator, µt, defined previously, the FDAs for the
outgoing-radiation boundary conditions are

Φn+1
j − Φn

j

4t
= µt

[
DF

x Φn
j

]
j = 1 (50)

Φn+1
j − Φn

j

4t
= −µt

[
DB

x Φn
j

]
j = J (51)

• Finally, in our RNPL implementation of this scheme, we will set initial data of
the form

Φ0
j = A exp

[
− ((x− x0) /δ)2

]
(52)

Π0
j = σΦ0

j (53)

where σ = −1, 0, 1 will generate purely left-moving, left-moving/right-moving
(time symmetric) or purely right-moving data, respectively, and where A, x0

and δ are adjustable parameters of the gaussian pulse shape
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