
1 Basic considerations

We begin with some basic considerations form mathematical properties of generic hyper-
bolic systems. The subject is certainly much deeper than what can be covered in a few
weeks (or even a semester). However we here include the main results directly relevant to
our discussion in simple situations which can be intuitively applied to more general ones.
The interested reader should consult the excellent book by Gustaffson, Kreiss and Oliger[1],
arguably the fathers of numerical analysis.

All (quasi-linear) “hyperbolic” equations can be generically written, in first order form,
as

q,t + Ai(q, t)q,xi = S(q, xa, t) (1)

with q a vector ∈ ℜm describing the functions describing the solution, Ai m × m matrices,
i = 1..d (with d the dimensionality of space) and S particular sources or “lower order
terms” (i.e. non-differentiated terms) . For instance, Maxwell, Einstein and Euler equations

1

Vasileios Paschalidis, Princeton
Frans Pretorius, Princeton

IFT-UNESP
São Paulo, Brazil

March 28 - April 1, 2016

Luis Lehner, Perimeter Institute

Much ado about hydrodynamics and related
problems

Part I: Overview & Burger's Equation

(Based on previous work by Inaki Olabarrieta, Matt Choptuik and Pretorius, 2003
 and Choptuik, Lehner, Pretorius, 2010)

can all be cast this way. A system given by (1) is called “hyperbolic” if the matrices Ai

can be diagonalized by appropriate transformations & all eigenvalues are real1. In this
case, well posedness of the problem (in the absence of boundaries) can be established. The
mathematical definition of well posedness (which has direct implications at the physical level)
says a problem is well posed if (for simplicity we consider no boundaries are involved, though
the concept can be extended for this case):

• A solution exists.

• This solution is unique.

• The solution depends continuously on the initial data. Namely the solution q1 obtained
from initial q1(x, t = 0) and the solution q2 from initial data q2(x, t = 0) = q1(x, t =
0)+δ(x) (for a small data) will be “close” to each other. By close on means |q2(x, T)−
q1(x, T)| ≤ AeκT |δ|. (with A, κ > 0 constants which do not depend on the initial data.

Alternatively, if it can not be diagonalized or at least one eigenvalue is complex, the equa-
tions can not describe a well posed problem (ie. the problems will be ill posed generically!).
Typically ill posed problems will have a bound like |q2(x, T) − q1(x, T)| ≤ A(ω)eκ(ω)T |δ|.
Thus, in particular, κ will grow for larger modes in the initial data.

An example in one dimension where the eigenvalues are real (= 1) but is not diagonaliz-
able is given by

~qt =

(
1 1
0 1

)

~qx =: A~qx (2)

The behavior of solutions can be understood in terms of simple wave solutions (or by taking
different Fourier modes). The solution can be written as,

~q(x, t) = eiωAteiωx~̂q(ω, 0) =

(

i + i ω

(
1 1
0 1

)

t

)

eiω(x+t)~̂q(ω, 0) (3)

Computing the norm |~q(x, t)| one sees that there is a polynomial growth in ωt. This is
typically the case for weakly hyperbolic systems, while in principle a polynomial growth
is not as bad, one can prove that generic lower order terms will drive the growth to be
exponential.

NOTE: these are important properties regardless of whether one intends to do numerics or
not. The statement of ill posedness already indicates the particular theory that gave raise to
those equations either simply does not make sense or freedom in the theory must be exploited

to render the equations hyperbolic. An example of the latter is Einstein’s theory, and example
of the former are many new “alternative” theories of gravity which, for instance, give rise to
third derivatives of the field variables. As mentioned by Choptuik, the importance of true
hyperbolicity has long been understood by mathematicians, physicists have only caught up
to this in just a few branches, it is all too common to see ill-defined approaches doomed to

1If a single transformation can diagonalize all Ai the system is strictly hyperbolic, if the matrices A are
symmetric, the system is called symmetric hyperbolic otherwise it is called strongly hyperbolic all these

types are the only ones that make sense physically

2

fail for lack of awareness of this issue. If you understand this, you will definitively be ahead!
If additionally you are interested in obtaining solutions via numerical means, you must make
sure things make the most sense at the analytical level. Experience (and good arguments!)
says that at the numerical level, if something can go bad... it will go bad!

Note that hyperbolicity –in particular the existence of the transformation that diagonal-
izes the problem – imply that the problem 1 can be re-expressed as (say in 1D)

Q,t + Dx(q, t)Q,x = T (S(q, x, t)) (4)

for Q ≡ T (q) with T the transformation that diagonalizes the problem. and so it can be
seen as a series of equations like

Qa
,t + λa∂xQ

a = [T (S(q, x, t))]a (5)

with a = 1..m. In what follows, unless necessary we will thus discuss things with respect to
a single equation of the type (5) as hyperbolicity implies we can always reduce our system
to this level.

2 Towards the Euler equations, generalities

Euler equations arise from the compressible Navier-Stokes equations by neglecting viscosity
and head conduction. Mathematically one of the most interesting features admitted by
solutions of these equations is the presence of shocks.

Shocks are mathematical idealizations of the steep gradients that can be present in smooth
solutions to the full Navier-Stokes equations where rapid changes occur over very thin re-
gions. Any numerical effort to describe solutions to these equations must therefore be aware
of this possible scenario! In fact, “naive” or “direct” discretizations of these equations typ-
ically obtain solutions which are either very smeared out or with spurious oscillations near
discontinuities. We will return to numerical techniques to address these problems later;
however, we first need to understand analytical properties of these equations to understand
what to do.

3 Advection equation, linearly degenerate and truly

non-linear equations

Consider q(x, t) a generic function we want to compute, we further assume the behavior of
this function obeys the simple hyperbolic equation,

q,t + Aq,x = 0 , (6)

with q(x, t) ∈ ℜm, A a m×m matrix. The system is hyperbolic if A is diagonalizable, which
allows us to view the solution in terms of propagating waves. The simplest example is the
constant coefficient one-dimensional advection equation,

q,t + uq,x = 0 . (7)

3

The solution to this problem is given by q(x−ut, 0) thus any profile q has at the initial time,
it is simply advected at velocity u. Of course, there are more complicated cases, for instance,

q,t + F (q),x = 0 . (8)

for which a particularly simple example would be F (q) = q2/2, and so q,t + qq,x = 0. While
it does not look too different from equation (7), there is a lot more than meets the eye here...

3.1 Small detour, why do we even care?

Consider the function ρ(x, t) describing the density of a fluid in a one-dimensional setting.
The mass m in a box of extent [x1, x2] at time t is given by

m =
∫ x2

x1

ρ(x, t)dx . (9)

Now, if the “walls” are permeable, fluid might enter/leave the box and so m will change in
time. The rate of fluid flow (flux) past any given point is F (x, t) = ρ(x, t)u(x, t) so,

d

dt
m =

d

dt

∫ x2

x1

ρ(x, t)dx = ρ(x1, t)u(x1, t) − ρ(x2, t)u(x2, t) = F (x1, t) − F (x2, t) (10)

Integrating the above equation in both time (in [t1, t2]) one obtains,

∫ x2

x1

ρ(x, t2)dx =
∫ x2

x1

ρ(x, t1)dx +
∫ t2

t1
ρ(x1, t)u(x1, t)dt −

∫ t2

t1
ρ(x2, t)u(x2, t)dt (11)

Thus, m(t2) will be given by m(t1) plus/minus the amount of fluid that entered/left the
domain. What do we do with this?, suppose ρ, u are differentiable (smooth), thus

ρ(x, t2) − ρ(x, t1) =
∫ t2

t1
∂t (ρ(x, t)) dt (12)

ρ(x2, t)u(x2, t) − ρ(x1, t)u(x1, t) =
∫ x2

x1

∂x (ρ(x, t)u(x, t)) dx (13)

Replacing in equation (11), we get

∫ t2

t1

∫ x2

x1

[∂tρ + ∂x(ρu)] dxdt = 0 (14)

and so ∂tρ + ∂x(ρu) = 0 simply states conservation of mass. Recall that when obtaining this
equation, we assumed ρ, u are differentiable, as we will discuss below, this assumption need
not be justified.

3.2 A shocking truth, life is not so simple

Consider again the equation (8), and for simplicity take F (q) = q2/2, the resulting equation
is known as the Burger’s equation which can also be found written as q,t + qq,x = 0. Now,

4

this does not seems like too different from q,t +uq,x = 0 for a general function u; it turns out
however, the “small” difference introduced will lead to dramatically different behavior2

Why is this the case? A simple way to see this is to consider the behavior of perturbations
δq over a given solution qo for a small period of time, the equation determining this behavior
is straightforwardly,

δq,t + qoδq,x = 0 (15)

from our previous discussion, the solution will be given by δq(x, t) = δ(x − qot). Notice
that if, in particular, 0 < qo(x2, t = 0) < qo(x1, t = 0) (x1 < x2) it is trivial to see that at
t = (x2 − x1)/(qo(x1, t = 0) − qo(x2, t = 0)) δq is multivalued, which does not make sense.
What happened here is that the characteristics of the solution crossed. And the solution
can not be determined past this point at least. Mathematically the difference between the
equation q,t+qq,x = 0 and q,t+uq,x = 0 is that the characteristic speed of the former depends
on the solution itself while this is not the case for the latter. Mathematicians refer to the first
one as truly non-linear while the second as linearly degenerate. For higher dimensions the
analog problem arises if the characteristic speed of a given mode depends on the solutions
in the subspace described by the eigenvector corresponding to such speed. If so, as in the
simple Burger’s example, the solution can not be easily determined past some local point
(points). Physically on the other hand, this does not make sense, as we expect a unique
solution to exist past these problematic points, so something went wrong somewhere. Where
did we go wrong? It was in our assumption of smoothness and differentiability which we used
to derive the differential form of the equation which is not valid if discontinuities develop in
the solution. To address this issue we approach the problem in a different light. The new
approach is to consider “weak solutions”, i.e. solutions to the integral form of (11),

∫ ∫
Φ(q,t + ∂xf(q))dxdt = 0 , (16)

for arbitrary (smooth and with compact support) test functions Φ, upon integration by parts
(and taking the limit of the boundary –both in space and time to infinity–, one obtains,

∫ ∫
(Φ,tq + f∂xΦ)dxdt =

∫
Φ(x, 0)q(x, 0)dx . (17)

This approach allows for a way to deal with discontinuities in a special way (recall similar
“tricks” allow to make sense of the Dirac δ “function” in a distributional sense. A detailed
discussion of this theory is beyond the scope of this course. We instead describe the main
aspects relevant to the numerical implementation of these type of equations.

3.3 Riemann problem and general considerations

A Riemann problem is defined by a conservation law type equation with piecewise constant
data having a single discontinuity. Let’s go back to Burger’s equation as an example and
consider initial data given by:

q(x, t = 0) =

{
ql if x < 0
qr if x > 0

(18)

2The word “dramatic” is often a hyperbola used by physicists to stress an important point. It is often an
exaggeration but, we can assure you... in this case it is definitively not!

5

For ql > qr it is easy to see that the “left” (l) state will run into the ‘right’ (r) state. The
solution is thus multivalued along a line defined by x = st ≡ (ql + qr)/2. The velocity of
the shock s is given by the Rankine-Hugoniot jump conditions, which for one-dimensional
problems is simply s = (f(ql) − f(qr))/(ql − qr). The unique solution is given by,

q(x, t = 0) =

{
ql if x < st
qr if x > st

(19)

For ql < qr the characteristics diverge and several weak solutions exist. The requirement
that the entropy across a discontinuity increases help single out a unique solution, which is
known as a rarefraction wave given by,

q(x, t) =






ql if x < qlt
x/t if qlt < x < qrt
qr if qrt < x

(20)

In principle the approach we took to obtain solutions can be generalized to arbitrary dimen-
sions, however it is expensive and cumbersome. Since we are after an approximate solution
we can take a less costly approach –still based in the previous discussion– which still provides
the correct solution as the discretization length is taken to 0 in a controlled manner.

4 Discretization

4.1 Finite Volumes

We are interested in truly non-linear problems which, as discussed, give rise to shocks (dis-
continuities on the variables describing the state of the fluid) even when the initial data
is smooth. This implies that näıve discretizations based on the continuity of the functions
(like some of the finite difference methods used on Project 1) are doomed to fail. There are
different approaches we could take to solve this system. Here we will take a finite volume
approach, meaning that we will assume that we have a mesh of grid points that define a cell
structure on our spacetime (see Figure 1). In the presence of discontinuities the only way
to make sense of our system of equations is to consider averages over a finite volume of the
spacetime. Therefore to find the discretization we take the average of equation (44) over a

spacetime cell C
n+1/2
i :

1

V
C

n+1/2

i

∫

C
n+1/2

i

∂q

∂t
+

1

V
C

n+1/2

i

∫

C
n+1/2

i

∂f

∂x
=

1

V
C

n+1/2

i

∫

C
n+1/2

i

ψ, (21)

where C
n+1/2
i is the region of spacetime defined by (tn, tn+1) × (xi−1/2, xi+1/2), and V

C
n+1/2

i
=

∆t∆x is its volume. The resulting equation can be written as:

1

∆t∆x

∫ xi+1/2

xi−1/2

∫ tn+1

tn

∂q

∂t
dxdt +

1

∆t∆x

∫ xi+1/2

xi−1/2

∫ tn+1

tn

∂f

∂x
dxdt =

1

∆t∆x

∫ xi+1/2

xi−1/2

∫ tn+1

tn
ψdxdt.

(22)

6

x x

t

t

t

i+1/2 i+3/2

n

n+1

n+2

xi i+1

i
C

x

n+1/2

i−1/2

x

x∆

∆t

Figure 1: Cell structure of the spacetime for a finite volume discretization in one dimension.
The spacetime cells C

n+1/2
i are centred at positions (tn+1/2, xi) and their volumes are ∆t∆x.

We can partially integrate the different terms of the equation using Gauss’ theorem:

q̄n+1
i − q̄n

i

∆t
+

F
n+1/2
i+1/2 − F

n+1/2
i−1/2

∆x
= ψ̂

n+1/2

i . (23)

Here we have used the following definitions: the spatial averages of the conservative variables,

q̄n
i ≡

1

∆x

∫ xi+1/2

xi−1/2

q(tn, x)dx, (24)

the temporal averages for the fluxes, also referred as the numerical fluxes,

F
n+1/2
i+1/2 ≡

1

∆t

∫ tn+1

tn
f
(
q(t, xi+1/2)

)
dt, (25)

and the total averages over the spacetime cell for the sources,

ψ̂
n+1/2

i ≡
1

∆x∆t

∫ xi+1/2

xi−1/2

∫ tn+1

tn
ψ(t, x)dxdt. (26)

The idea now is to use equation (23) to calculate {q̄n+1
i } assuming we know the values {q̄n

i }.

However the calculation of the numerical fluxes {F
n+1/2
i+1/2 } is not as straightforward as one

may think—these fluxes are averages in time, so in order to explicitly calculate them we need
to already know the solution. More importantly, the values for the fluid quantities on the
left side of the cell boundary {q̄n

i } and on the right side {q̄n
i+1} won’t agree in general. The

values have discontinuities and a priori is not clear which values to use in order to compute
the numerical fluxes. One way to solve these problems is to use an idea due to Godunov that
involves solving a Riemann problem at every cell boundary in order to calculate {F

n+1/2
i+1/2 }.

For more information about Godunov methods see LeVeque [6]. In the following section we
explain one such method.

7

4.2 Roe Solver

The solution of the full Riemann problem at every cell boundary is usually not very efficient.
In most cases the overall time step to update the variables to the future time will involve some
kind of iterative process, and thus exactly solving the Riemann problem at each iteration
will not imply that the overall process will be solved more rapidly or accurately. The Roe
solver is a solver that uses modified Riemann problems in order to compute the numerical
fluxes. For a more extensive explanation of this and other approximate Riemann solvers see
LeVeque [6]. The main idea is to linearize the fluxes in equation (44) as functions of q, also
assuming that the sources vanish:

∂q

∂t
+

∂f

∂q

∂q

∂x
= 0. (27)

Considering ∂f/∂q to have constant coefficients linearizes the above equation, and a solution
can be obtained by diagonalizing the Jacobian matrix (see appendix for the solution of the
scalar linear equation and its generalization to a system of linear equations). The numerical
flux can then be written as a function of the solution to this problem. Here we write the
resulting numerical fluxes directly as:

FRoe
i+1/2 =

1

2

[

f
(
p̃R

i+1/2

)
+ f

(
p̃L

i+1/2

)
−
∑

α

|λα|ωαrα

]

. (28)

Some explanation of the different terms that appear in the above equation are in order. First,
(p̃R, p̃L), known as right and left reconstructed variables, are the values of the primitive
variables at the boundary, xi+1/2 calculated via some specific reconstruction (interpolation)
scheme. Special care is taken in calculating the reconstructed variables in order to reduce
spurious oscillations close to discontinuities. Here we use a slope limiter interpolation to
compute the reconstructed values (see Mart́ı and Mueller [2] and LeVeque [6] for alternate
reconstruction algorithms):

p̃L
i+1/2 = p̄i + σi

(
xi+1/2 − xi

)
, (29)

p̃R
i+1/2 = p̄i+1 + σi+1

(
xi+1/2 − xi+1

)
, (30)

where σi is given by
σi = minmod

(
si−1/2, si+1/2

)
. (31)

Here:

si+1/2 =
p̄i+1 − p̄i

xi+1 − xi
, (32)

and the minmod function is defined by

minmod(a, b) =






0 if ab < 0
a if |a| < |b| and ab > 0
b if |a| > |b| and ab > 0.

(33)

8

In equation (28) we also use the characteristic structure of the Riemann problem at the
xi+1/2 interface (λα, ωα, rα). Given the Jacobian matrix:

A|i+1/2 =
∂f

∂q

∣∣∣∣∣
q=1/2 (q̃L

i+1/2
+q̃

R
i+1/2

)

, (34)

λα are the eigenvalues3 of A, rα are the right eigenvectors associated with the eigenvalues
λα and ωα are the jumps in the characteristic variables defined by

q̃R
i+1/2 − q̃L

i+1/2 =
∑

α

ωαrα. (35)

Here (q̃R, q̃L) are the values of the conservative variables calculated from the reconstructed
primitive variables (p̃R, p̃L). Reconstruction of the primitive variables followed by transfor-
mation to conservative variables generally yields more stable results than direct reconstruc-
tion of the conservative variables.

The final part of the Roe solver involves the update of {q̄n
i }. The fact that we use an

approximate Riemann solver to calculate the numerical flux makes (28), when evaluated
using the spatial averages at time tn, a first order approximation to the real numerical flux
defined by (25). This is usually the case also when calculating the numerical sources (26).
In order to make the time evolution second order (in the temporal discretization scale), we
use a second order Runge-Kutta method to advance the solution in time:

q̄n+1/2 = q̄n +
∆t

2
L(q̄n) (36)

q̄n+1 = q̄n + ∆tL(q̄n+1/2) . (37)

Here L is defined by:

L(q̄n) = −
FRoe

i+1/2 (q̄n) − FRoe
i−1/2 (q̄n)

∆x
+ ψ̂i (q̄

n) . (38)

Summarizing the approach described above involves:

• Expressing the system of equation in “conservation” form, i.e. qi
,t + ∂jF

ij = 0.

• Solve a series of (approximate) Riemann problems at cell interface.

• Calculating the characteristic structure of the system (for solving the Riemann prob-
lem).

Armed with the considerations and techniques described so far, let’s turn to a problem of
relevance to us.

3Here α (and later on also β) labels the equation number, in the fluid case since we have two equations
it takes values on {1, 2}.

9

Conversely at every half and full step in our update procedure we need to calculate the
primitive variables after the conservative variables have been evolved. It is not difficult to
invert the equations that define the conservative variables in order to get the primitive ones
(see NC [5]):

P = −2βτ +
√

4β2τ 2 + (Γ − 1) (τ 2 − S2) (60)

ρ = P/(Γ − 1) (61)

v =
S

τ + P
(62)

where β = (2 − Γ) /4.

Floor

Due to numerical errors (truncation error, roundoff error) the quantities that describe
the fluid can sometimes take unphysical values (i.e. negative pressures, negative densities,
speeds larger than one, etc,...) (see NC [5]). Effects of such errors become particularly
important in “evacuated” regions, where densities are low and velocities can be very large.
In order to circumvent problems associated with these errors, we force certain values to be
above some threshold, that we call a floor. For the ultrarelativistic fluid it is convenient to
floor the conservative variable τ in the following way:

τ = max{τ,floor + |S|}, (63)

where |S| is the absolute value of S and floor is a small value, typically several orders of
magnitude (usually 13 or 14 orders of magnitude) smaller than typical values of τ . Generally,
a flooring procedure of this sort will not have an important dynamical effect (although this
is something that needs to be verified empirically), and ameliorates the problems described
above. We recommend application of this algorithm every time the conservative variables
are updated or calculated from reconstructed primitive variables at the cell boundaries.

7 Burger’s Equation

Burger’s equations is an example of a non-linear scalar equation that produces shocks, even
from smooth initial data (see LeVeque [6]). One form of the equation is

q̇ + q
∂q

∂x
= 0. (64)

which is easy to cast into conservative form

q̇ +
(

1

2
q2
)′

= 0. (65)

Using the notation introduced previously, we have

q = q, f =
1

2
q2, ψ = 0. (66)

13

We solve this equation with a finite volume discretization and a Roe solver, as outlined in
the previous section. The finite volume discretization of the equation is

q̄n+1
i − q̄n

i

∆t
+

F
n+1/2
i+1/2 − F

n+1/2
i−1/2

∆x
= 0 , (67)

where q̄n
i is the spatial average defined by equation (24) and F

n+1/2
i+1/2 is the numerical flux.

We now focus on a description of the characteristic structure of the equation that will allow
us to compute the Roe flux. Since (64) is a scalar equation the Jacobian matrix A is also a
scalar

A = q, (68)

the eigenvalue is the same scalar, λ = q, and we can take the right eigenvector to be 1.
Finally, the jump ω is just the difference of q across the cell boundary,

ω = qR − qL . (69)

Thus, we can write the Roe numerical flux as:

FRoe
i+1/2 =

1

2

[
f
(
qL
)

+ f
(
qR
)
− |λ| r ω

]

i+1/2
, (70)

where [· · ·]i+1/2 means that the quantities within the bracket are evaluated at xi+1/2. We
then solve (67) using the following time-stepping procedure:

1) Calculate the Roe numerical fluxes at the cell boundaries.

2) Update the variables to the half time step using equation (47) with

Delta t=Delta t/2.

3) Use the quantities at the half time step to compute the Roe numerical fluxes.

4) Do a full step to update to the future time step using the numerical fluxes

calculated in 3).

The previous pseudo code describes the use of the Roe solver within a second order Runge-
Kutta time stepping scheme. The overall method should be second order if no shocks are
developed, except in the vicinity of extrema of the dynamical variable, where the slope
limiting interpolation will generally degrade the solution to first order.

The calculation of the numerical fluxes involve the following steps:

1) Calculate the left and right reconstructed variables at the cell boundary.

2) Calculate the characteristic structure: eigenvalues, right eigenvectors

and jumps in the characteristic variables.

4) Calculate the physical fluxes F for the left and right reconstructed

variables.

3) Calculate the Roe numerical flux using equation (50).

14

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

x xx
1 2 3

x x x
NxNx−1Nx−2

Figure 2: Spatial cell structure for a grid with Nx cells and two ghost cells (Ng = 2) per
boundary. The solid circles lie at the spatial locations of the grid cell centres, and coincide
with the grid points generated by the RNPL code. Shaded areas represent ghost cells where
dynamical variables are updated according to the boundary conditions we impose. The
squares and vertical lines denote the cell boundaries, and are the locations at which the
reconstructed variables and numerical fluxes are calculated.

Boundary Conditions and Cell Structure
In order to impose boundary conditions we make use of ghost cells. These cells are not

updated using the equations of motion, but rather are set according to the specific boundary
conditions that we wish to impose. The boundary conditions that we impose are a first order
approximation to outgoing boundary conditions (often called outflow conditions in the fluid
literature). We implement these conditions simply by setting the ghost cell values to the
value in the last regular cell:

q1 = q3 (71)

q2 = q3 (72)

qNx−1 = qNx−2 (73)

qNx = qNx−2 (74)

Here Nx is the number of cells in the entire grid (including ghost cells).
Note that in order to update the interior points, i.e. the xi with i = Ng + 1, ..., Nx − Ng

we need to calculate the numerical fluxes at positions xi+1/2 with i = Ng, ..., Nx − Ng.

Finite Difference
Due to the simplicity of equation (64), it is also straightforward to solve using a finite dif-
ference approximation that uses an upwind stencil (an upwind stencil is one which uses
information only a specific characteristic direction, relative to the point at which the ap-
proximation is applied). Interestingly, however, if we discretize Burger’s equation in the
form (64) using such a technique

qn+1
i = qn

i −
∆t

∆x
q

n+1/2
i

(
q

n+1/2
i − q

n+1/2
i−1

)
, (75)

we find that the shock speeds obtained are erroneous, even in the continuum limit. In this in-
stance, the problem can be solved by discretizing the conservative form of the equation, (65):

qn+1
i = qn

i −
∆t

∆x

[
1

2

(
q

n+1/2
i

)2
−

1

2

(
q

n+1/2
i−1

)2
]
. (76)

15

High Resolution Shock Capturing (HRSC)

Scheme

March 28 - April 1, 2016

Reference book: Riemann Solvers and Numerical Methods for Fluid Dynam-
ics: A Practical Introduction by E.F. Toro

Based on work by Yuk Tung Liu, 2010

1 Equations of hydrodynamics in conservative
form

Recall eqns of hydrodynamics (adiabatic flow, no gravity):

∂tρ+ ∇ · (ρu) = 0 (1)

∂t(ρui) +
∑
j

∂jΠij = 0 (2)

∂tE + ∇ · [(E + P)u] = 0, (3)

where

Πij = ρuiuj + Pδij (4)

E = ρε+
1

2
ρu2. (5)

γ-law equation of state:
P = (γ − 1)ρε. (6)

These hydro equations are written in conservative form:

∂tU + ∇ · F (U) = S(U), (7)

where

U =


ρ
ρux
ρuy
ρuz
E

 , S =


0
0
0
0
0

 , (8)

1

Fx =


ρux

ρu2
x + P
ρuxuy
ρuxuz

(E + P)ux

 , Fy =


ρuy
ρuxuy
ρu2

y + P
ρuyuz

(E + P)uy

 , Fz =


ρuz
ρuxuz
ρuyuz
ρu2

z + P
(E + P)uz

 .

(9)
HRSC methods are designed to evolve the system of equations written in

conservative form. In the following I will only discuss the equations in 1D.

1.1 Equations in one dimension

1.1.1 Plane 1D flow

Consider ρ = ρ(x), P = P (x) and u = u(x)x̂. Hydrodynamics equations
become:

∂tU + ∂xF (U) = 0, (10)

where

U =

 ρ
ρu
E

 , F =

 ρu
ρu2 + P

(E + P)u

 . (11)

The variables ρ, ρu and E are called the conservative variables, whereas ρ,
u and P are called the primitive variables.

2 Riemann Problem

The Riemann problem plays an important role in the HRSC technique.
Definition: The Riemann problem for 1D equations is the initial value prob-

lem (IVP) for the conservation laws

∂tU + ∂xF (U) = 0 (12)

with initial conditions (IC)

U(x, 0) =

{
UL if x < 0
UR if x > 0

. (13)

The domain of interest in the x-t plane are points (x, t) with −∞ < x <∞ and
t > 0.

2.1 Linear advection equation

PDE: ∂tu+ λ∂xu = 0, (14)

IC: u(x, 0) =

{
uL if x < 0
uR if x > 0

, (15)

where λ is a constant.

2

The general solution of (14) is u(x, t) = f(x − λt), where f is an arbitary
function. Hence the solution to the Riemann problem is

u(x, t) =

{
uL if x < λt
uR if x > λt

. (16)

This solution is depicted in the following diagram in the x-t plane:

2.2 Linear hyperbolic systems

PDE: ∂tU +A∂xU = 0, (17)

IC: U(x, 0) =

{
UL if x < 0
UR if x > 0

, (18)

where

U =


U1

.

.

.
Um

 , (19)

and A is an m×m matrix with constant coefficients and has m real eigenvalues
λ1, · · · , λm. Let M be the m ×m matrix that diagonalizes A: M−1AM = Λ
where Λ is the diagonal matrix

Λ =


λ1

.
.
.
λm

 . (20)

Consider
U = MW (21)

with

W =


W1

.

.

.
Wm

 , (22)

3

Then (17) becomes

M∂tW +AM∂xW = 0
⇒ ∂tW +M−1AM∂xW = 0

⇒ ∂tW + Λ∂xW = 0 (23)

or
∂tWi + λi∂xWi = 0. (24)

The solution of the above PDE is Wi(x, t) = Wi(x− λit). Hence

Ui(x, t) =

m∑
j=1

MijWj(x− λjt) . (25)

The functions Wj(x) are determined by U(x, 0) as

Wj(x) = (M−1U(x, 0))j =


WL
j if x < 0

WR
j if x > 0

. (26)

where

WL
j = (M−1UL)j =

m∑
k=1

(M−1)ik(UL)k, (27)

WR
j = (M−1UR)j =

m∑
k=1

(M−1)ik(UR)k. (28)

Introduce a set of vectors K(j)

K(j) =


K

(j)
1

.

.

.

K
(j)
m

 (29)

such that
K

(j)
i = Mij . (30)

The matrix M can be expressed as

M =


K

(1)
1

.

.

.

K
(1)
m

K
(2)
1

.

.

.

K
(2)
m

· · ·

K
(m)
1

.

.

.

K
(m)
m

 . (31)

According to linear algebra theory, K(j) is an eigenvector of A with eigenvalue
λj :

AK(j) = λjK
(j). (32)

4

It follows from (25) that U can be expressed as a sum over the eigenvectors:

U(x, t) =

m∑
j=1

Wj(x− λjt)K(j). (33)

Sort the eigenvalues so that λ1 ≥ λ2 ≥ · · · ≥ λm. Then

U(x, t) =



UR if x > λ1t
U (1) if λ2t < x < λ1t
U (2) if λ3t < x < λ2t
. .
. .
. .
U (m−1) if λmt < x < λm−1t
UL if x < λmt

, (34)

where

U (k) =

k∑
j=1

WL
j K

(j) +

m∑
j=k+1

WR
j K

(j), (k = 1, 2, · · · ,m− 1) (35)

or

U (1) = UR + α1K
(1) (36)

U (k) = U (k−1) + αkK
(k) (k = 2, 3, · · · ,m− 1) (37)

UL = U (m−1) + αmK
(m), (38)

where
αk = WL

k −WR
k (k = 1, 2, · · · ,m). (39)

The solution of the Riemann problem consists of m + 1 states separated by m
lines x = λkt (k = 1, 2, · · · ,m) as depicted below:

2.3 Riemann problem for 1D fluid dynamics

PDE: ∂tU + ∂xF = 0, (40)

IC: U(x, 0) =

{
UL if x < 0
UR if x > 0

. (41)

5

Here

U =

 U1

U2

U3

 =

 ρ
ρu
E

 , (42)

F =

 ρu
ρu2 + P

(E + P)u

 =

 U2
(3−γ)U2

2

2U1
+ (γ − 1)U3

γU2U3

U1
− (γ−1)U3

2

2U2
1

 . (43)

As mentioned in the previous subsection, the PDE can be written as

∂tU +A(U)∂xU = 0 (44)

with the Jacobian matrix given by

A(U) =
∂F

∂U

=


0 1 0

− 1
2 (γ − 3)

(
U2

U1

)2

(3− γ)U2

U1
γ − 1

−γ U2U3

U2
1

+ (γ − 1)
(
U2

U1

)3

γ U3

U1
− 3

2 (γ − 1)
(
U2

U1

)2

γ U2

U1

(45)

=

 0 1 0
1
2 (γ − 3)u2 (3− γ)u γ − 1

u
[

1
2 (γ − 1)u2 −H

]
H − (γ − 1)u2 γu

 . (46)

The eigenvalues of A(U) are

λ1 = u+ c , λ2 = u , λ3 = u− c. (47)

Unlike the previous subsection, the coefficients of the matrix A(U) are not con-
stants. The technique in Section 2.2 does not apply here. The system of PDEs
is nonlinear.

There is no exact closed-form solution to the Riemann problem for these
equations. However, it is possible to devise an iterative numerical schemes to
compute the solution to any desired degree of accuracy (see chapter 4 of Toro’s
book).

Here we summarize the general property of the solution as follows.

6

• Four constant states UL, UL∗, UR∗ and UR (see the graph above).

• A contact discontinuity between UL∗ and UR∗ across which the velocity
and pressure remain constant.

• UL and UL∗ are joined by either a shock or rarefaction wave; UR and UR∗
are joined by either a shock or rarefaction wave.

• Values of SL, S0 and SR are not, in general, the characteristic speeds given
by the eigenvalues of A(U).

7

3 High Resolution Shock Capturing Schemes

HRSC schemes are numerical schemes for solving a system of PDE written in
conservative form

∂tU + ∇ · F (U) = S(U). (48)

Here we will only discuss the 1D equations and numerical schemes accurate to
first order in space and time.

3.1 Discretisation

Computational domain: xL ≤ x ≤ xR.
Discretise the interval [xL, xR] into N equal cells. Each cell has length

∆x =
xR − xL

N
. (49)

8

The location of cell centers are

xi = xL +

(
i− 1

2

)
∆x , i = 1, 2, · · · , N. (50)

The cell interfaces are located at

xi+ 1
2

= xL + i∆x , i = 0, 2, · · · , N. (51)

3.2 Conservative methods

Consider a system of PDE written in the form

∂tU + ∂xF (U) = 0. (52)

In the finite volume approach, the cell-averaged value of U is evolved. Denote

Uni =
1

∆x

∫ x
i+1

2

x
i− 1

2

U(x, tn)dx. (53)

Given the data Uni (i = 1, 2, · · · , N), we want to calculate Un+1
i , the cell-

averaged U at t = tn+1 for i = 1, 2, · · · , N . Denote the time-averaged flux at
the cell interface as

fi+ 1
2

=
1

∆tn

∫ tn+1

tn

F (U(xi+ 1
2
, t))dt, (54)

where ∆tn = tn+1 − tn. Integrate (52) in space from xi− 1
2

to xi+ 1
2

and in time
from tn to tn+1: ∫ tn+1

tn

dt

∫ x
i+1

2

x
i− 1

2

dx(∂tU + ∂xF) = 0. (55)

Using the definitions in (53) and (54) gives the finite volume equation

Un+1
i = Uni −

∆tn
∆x

(fi+ 1
2
− fi− 1

2
). (56)

Note that equation (56) is exact. No approximation has been made so far.
A conservative scheme for evolving equation (52) is a numerical method

based on eqn. (56) with fi+ 1
2

taking the form

fi+ 1
2

= fi+ 1
2
(Uni−kL , · · · , U

n
i+kR), (57)

where kL and kR are two non-negative integers. This is called the numerical
flux, an approximation to the exact flux in (54).

9

3.2.1 Method of Godunov

Let Ũ(x, t) with t > tn be the solution of the Riemann problem

PDE: ∂tU + ∂xF (U) = 0 (58)

IC: U(x, tn) =

{
Uni if x < xi+ 1

2

Uni+1 if x > xi+ 1
2

. (59)

Godunov’s method is to compute the numerical flux according to

fi+ 1
2

=
1

∆tn

∫ tn+1

tn

F (Ũ(xi+ 1
2
, t))dt. (60)

This method is first-order accurate.

Hence to compute the flux fi+ 1
2
, we need to solve the local Riemann problem

at each cell interface. In general, there are multiple waves emerging from each
cell interface (see the diagram above). In eqn. (60), there is an implicit assump-
tion that the value of the local Riemann problem solution along the intercell
boundary is constant. This means that the fastest wave at a given time travels
for less than one cell length ∆x. This places an restriction on the timestep
∆tn. Denote by Snmax the maximum wave speed throughout the domain at time
t = tn. The maximum timestep is given by

∆tmax
n =

∆x

Snmax

. (61)

One may set
∆tn = CF∆tmax

n , (62)

where 0 < CF < 1 is called the Courant factor.
Example:
Consider the linear advection equation

∂tu+ ∂xF (u) = 0 (63)

with F (u) = λu, where λ is a constant. The solution of the Riemann problem
for (63) with the IC

u(x, tn) =

{
uni if x < xi+ 1

2

uni+1 if x > xi+ 1
2

(64)

10

is

ũ(xi+ 1
2
, t) =

{
uni if λ > 0
uni+1 if λ < 0

. (65)

Hence

fi+ 1
2

=

{
λuni if λ > 0
λuni+1 if λ < 0

(66)

and eqn. (56) becomes

un+1
i =

 uni − λ∆tn
∆x (uni − uni−1) if λ > 0

uni − λ∆tn
∆x (uni+1 − uni) if λ < 0

, (67)

which is known as the first-order upwind scheme.

3.2.2 HLL Riemann solver

A Riemann problem is not always easy to solve and may require intense com-
putation. An alternative is to devise a scheme to solve it approximately. Here
we introduce one of the approximate Riemann solvers called the HLL (named
after Harten, Lax and van Leer) Riemann solver.

Consider the Riemann problem

PDE: ∂tU + ∂xF (U) = 0 (68)

IC: U(x, 0) =

{
UL if x < 0
UR if x > 0

. (69)

Consider the spacetime region [x1, x2]×[0, T] with x1 < TSL and x2 > TSR (see
the diagram below), where SL and SR are the fastest signal velocities perturbing
the initial states UL and SR, respectively.

Assume that SR > 0 and SL < 0. Integrate eqn. (68) over x from x1 to x2

and over t from 0 to T∫ T

0

dt

∫ x2

x1

dx[∂tU + ∂xF (U)] = 0 (70)

yields∫ x2

x1

U(x, T)dx =

∫ x2

x1

U(x, 0)dx+

∫ T

0

F (U(x1, t))dt−
∫ T

0

F (U(x2, t))dt. (71)

11

Evaulate each term using the IC and the conditions x1 < TSL and x2 > TSR.
LHS:∫ x2

x1

U(x, T)dx =

∫ TSL

x1

U(x, T)dx+

∫ TSR

TSL

U(x, T)dx+

∫ x2

TSR

U(x, T)dx

= (TSL − x1)UL +

∫ TSR

TSL

U(x, T)dx+ (x2 − TSR)UR. (72)

First term on RHS: ∫ x2

x1

U(0, x)dx = x2UR − x1UL. (73)

Second term on RHS:∫ T

0

F (U(x1, t))dt = TF (UL) = TFL. (74)

Third term on RHS: ∫ T

0

F (U(x2, t))dt = TF (UR) = TFR. (75)

Here
FL = F (UL) , FR = F (UR). (76)

Combining all the terms yields∫ TSR

TSL

U(x, T)dx = T (SRUR − SLUL + FL − FR) (77)

or
1

T (SR − SL)

∫ TSR

TSL

U(x, T)dx =
SRUR − SLUL + FL − FR

SR − SL
. (78)

This means that the integral average of the exact solution of the Riemann
problem between the slowest and fastest signals at time T is a known constant
given by the right-hand-side of the above equation. Denote this average by Uhll:

Uhll =
SRUR − SLUL + FL − FR

SR − SL
. (79)

Consider the integral of eqn. (68) over x from TSL to 0− and over t from 0
to T : ∫ T

0

dt

∫ 0−

TSL

dx[∂tU + ∂xF (U)] = 0, (80)

which gives∫ 0−

TSL

U(x, T)dx =

∫ 0−

TSL

U(x, 0)dx−
∫ T

0

F (U(0−, t))dt+

∫ T

0

F (U(TSL, t))dt

12

= −TSLUL + T (FL − F0L), (81)

where

F0L =
1

T

∫ T

0

F (U(0−, t))dt. (82)

Similarly, integrating eqn. (68) over x from 0+ to TSR and over t from 0 to T
gives ∫ TSR

0+

U(x, T)dx = TSRUR + T (F0R − FR), (83)

where

F0R =
1

T

∫ T

0

F (U(0+, t))dt. (84)

Adding eqns. (81) and (83) yields∫ TSR

TSL

U(x, T)dt = T (SRUR − SLUL + FL − FR + F0R − F0L). (85)

Combining this equation with eqn. (77) gives

F0L = F0R ≡ F0. (86)

From eqns. (81) and (83) one obtains

F0 = FL − SLUL −
1

T

∫ 0

TSL

U(x, T)dt (87)

= FR − SRUR +
1

T

∫ TSR

0

U(x, T)dt. (88)

No approximation has been made so far. The HLL approximate Riemann
solver approximates the Riemann solution Ũ(x, t) by

Ũ(x, t) ≈

 UL if x < SLt
Uhll if SLt < x < SRt
UR if x > SRt

. (89)

13

Note that this approximation consists of just three constant states separated
by two fastest waves of speeds SL and SR. All intermediate states separated by
intermediate waves are lumped into the single state Uhll. The corresponding
flux F0 is given by (87) or (88) as

Fhll0 = FL + SL(Uhll − UL) = FR + SR(Uhll − UR). (90)

Use of (79) in (90) gives the HLL flux

Fhll0 =
SRFL − SLFR + SLSR(UR − UL)

SR − SL
. (91)

Note that this formula is derived by assuming that SL < 0 and SR > 0. Obvi-
ously, if SL < 0, F0 = FL; and if SR < 0, F0 = FR. Hence

Fhll0 =


FL if SL ≥ 0

SRFL−SLFR+SLSR(UR−UL)
SR−SL

if SL < 0 < SR

FR if SR ≤ 0

. (92)

Define two quantities cmax and cmin as

cmax = max(0, SR) , cmin = min(0,−SL). (93)

Equation (92) can be written as

Fhll0 =
cmaxFL + cminFR − cmaxcmin(UR − UL)

cmax + cmin
. (94)

The HLL Riemann solver provides a prescription for the numerical flux fi+ 1
2
.

Denote
FR = F (Uni+1) , FL = F (Uni). (95)

Then

fhlli+ 1
2

=
cmaxFL + cminFR − cmaxcmin(UR − UL)

cmax + cmin
. (96)

Estimate of SR and SL
The HLL flux requires the values of SR and SL for the Riemann prob-

lem at each cell interface. One of the most popular approaches for estimat-
ing bounds for SL and SR is based on the eigenvalues of the Jacobian matrix
A(U) = ∂F/∂U . Denote λmax(U) and λmin(U) as the maximum and minimum
eigenvalues of A(U). At the cell interface i+ 1

2 , one may set

SR = max[λmax(Uni), λmax(Uni+1)] , SL = min[λmin(Uni), λmin(Uni+1)]. (97)

For example, in the 1D fluid dynamics equation, λmax = u+ c and λmin = u− c.
Hence one may set

SR = max(uni + cni , u
n
i+1 + cni+1) , SL = min(uni − cni , uni+1 − cni+1). (98)

14

3.2.3 PDEs with source term

So far the focus has been on the homogeneous equation ∂tU + ∂xF = 0. Now
consider a PDE with a source term

∂tU + ∂xF (U) = S(U). (99)

One approach is simply to add the source term to the solution of the homoge-
neous equation:

Un+1
i = Uni −

∆tn
∆x

(fi+ 1
2
− fi− 1

2
) + ∆tnS(Uni), (100)

where the flux fi+ 1
2

is computed by the solution of the (approximate) Riemann
solver.

Since the Riemann solution does not take into account the presence of the
source term, this simple approach might lead to unphysical results due to the
mismatch in the treatment of flux and source terms. However, the problem is
largely reduced when sufficient resolution is used in many cases. Other tech-
niques of handling the source term can be found in Chapter 15 of Toro’s book
and the references therein.

3.2.4 Boundary conditions

Boundary conditions are needed for Un+1
1 (or f 1

2
) and Un+1

N (or fN+ 1
2
). There

are various ways of imposing boundary conditions depending on the specific
problems one wants to solve. Here we only mention three of them. In the
following, Y denotes Un+1 or f , and Yb denotes Un+1 or f at the boundary
points, i.e. Yb can be Un+1

1 , Un+1
N , f 1

2
or fN+ 1

2
.

Prescribed BC: The boundary points of Un+1 (or f) are determined by a
specified function B(t), i.e.

Yb = B(tn+1). (101)

The nature of B(t) depends on the specific problem, e.g. pumping of material
into the domain from the boundaries in a specified way.

Copy BC: Value of Yb is copied from the nearest point, which corresponds
to the BC that ∂xY vanishes at the boundary. This BC is also called the
transmissive BC. It is a numerical attempt to produce boundaries that allow
the passage of waves without any effect on them.

Extrapolation: Value of Yb are extrapolated from the nearby points, which
is a generalization of the copy BC.

Reflective BC: Consider the boundary on the left and suppose it physically
consists of a fixed, reflective impermeable wall. The reflective BCs for the fluid
variables ρ, u and P are

un+1
1 = −un+1

2 , ρn+1
1 = ρn+1

2 , Pn+1
1 = Pn+1

2 . (102)

15

Basic Ingredients of higher-order
Finite Volume methods

1) Derive a conservation-law formalism for the equations of motion
of the conserved variables U: (1)

2) Reconstruct the Primitive (P) variables to obtain the left and right
states across cell interfaces:

3) Solve the Riemann problem (approximately) to obtain the
numerical flux at the cell interface:

4) Compute the source and the numerical fluxes to get:
 , i.e., compute the RHS of (1)

5) Update the conservative by solving the ODE:

6) Invert the conservative variables to recover the primitive
variables and apply boundary conditions

∂tU+∂ x F (U)=S (U)

PL=Pi+1 /2−ε , PR=Pi+1/2+ ε

Fi+1 /2

∂t U=RHS

S i=S (U i
n
)

(F i+1 /2−Fi−1 /2)/Δx

Reconstruction methods

● Piecewise linear reconstruction

where is called the slope limited gradient.

● Slope limiters are important to avoid the spurious oscillations
that would otherwise occur with high order spatial discretization
schemes due to shocks

● There exist multiple slope limiters here we will present two

PL=Pi+∇ Pi Δx /2

PR=P i+1−∇ P i+1 Δx /2
∇ Pi

Reconstruction methods

● Minmod slope limiter (Roe 1986)

where

∇ Pi=
1
Δx

minmod (Pi+1−Pi , Pi−Pi−1)

minmod (a ,b)=
0 , if ab<0
a , if |a|<|b|, ab>0
b ,if |a|>|b|, ab>0

Reconstruction methods
● Monotonized central (MC) slope limiter (Van Leer 1977)

where

● Piecewise linear reconstruction with MC/minmod limiters are
2nd-order accurate for smooth flows and become 1st-order
accurate at shocks and extrema of P.

● Higher-order reconstruction: PPM (Colella & Woodward 1984),
WENO(5) (Jiang & Shu 1986)

∇ Pi=
1
Δx

MC (Pi+1−Pi , Pi−P i−1)

MC (a ,b)= 0 , if ab<0
sign(a)min (2|a|,2|b|,|a+b|/2) , otherwise

4 Recipe for evolving the 1D hydrodynamics equa-
tions

In this section, a recipe is given for solving the 1D hydrodynamics equations us-
ing the HRSC scheme with the HLL Riemann solver. The numerical techniques
introduced in the previous section are applied to this specific system of PDEs.

4.1 Plane symmetry

Recall the equations of hydrodynamics in 1D with plane symmetry are

∂tU + ∂xF (U) = 0 (103)

with the conservative variables U and fluxes F given by

U =

 U1

U2

U3

 =

 ρ
ρu
E

 , (104)

F =

 ρu
ρu2 + P

(E + P)u

 . (105)

Since many formulae are expressed in terms of the primitive variables ρ, u and
P , it is convenient to compute them from the conservative variables U1, U2 and
U3:

ρ = U1 , u = U2/U1 , P = (γ − 1)

(
U3 −

U2
2

2U1

)
. (106)

Recipe for computing Un+1
i given Uni

1. Determine the timestep ∆tn by

∆tn = CF
∆x

max(|unj + cnj |, |unj − cnj |)
, (107)

where 0 < CF < 1 is the Courant factor and the maximum are taken over

all cells j = 1, 2, · · ·N . The sound speed cnj is cnj =
√
γPnj /ρ

n
j .

2. For each cell i = 1, 2, · · · , N − 1:

(a) Compute the fluxes FL = F (Uni) and FR = F (Uni+1).

(b) Estimate the signal speeds SL and SR according to

SR = max(uni + cni , u
n
i+1 + cni+1) (108)

SL = min(uni − cni , uni+1 − cni+1). (109)

and then compute cmax and cmin by

cmax = max(0, SR) , cmin = min(0,−SL). (110)

16

(c) Calculate the HLL flux

fhlli+ 1
2

=
cmaxFL + cminFR − cmaxcmin(UR − UL)

cmax + cmin
. (111)

3. For each cell i = 2, 3, · · · , N − 1, compute Un+1
i according to

Un+1
i = Uni −

∆tn
∆x

(fhlli+ 1
2
− fhlli− 1

2
). (112)

4. Apply BC on Un+1
1 and Un+1

N .

Recipe for computing Un+1
i given Uni

1. Determine the timestep ∆tn by

∆tn = CF
∆r

max(|unj + cnj |, |unj − cnj |)
, (113)

where 0 < CF < 1 is the Courant factor and the maximum are taken over

all cells j = 1, 2, · · ·N . The sound speed cnj is cnj =
√
γPnj /ρ

n
j .

2. For each cell i = 1, 2, · · · , N − 1:

(a) Compute the fluxes FL = F (Uni) and FR = F (Uni+1).

(b) Estimate the signal speeds SL and SR according to

SR = max(uni + cni , u
n
i+1 + cni+1) (114)

SL = min(uni − cni , uni+1 − cni+1). (115)

and then compute cmax and cmin by

cmax = max(0, SR) , cmin = min(0,−SL). (116)

(c) Calculate the HLL flux

fhlli+ 1
2

=
cmaxFL + cminFR − cmaxcmin(UR − UL)

cmax + cmin
. (117)

3. Set fhll1
2

= 0.

4. For each cell i = 1, 2, · · · , N − 1, compute Un+1
i according to

Un+1
i = Uni −

∆tn
∆r

(fhlli+ 1
2
− fhlli− 1

2
) + ∆tnS(Uni). (118)

5. Apply BC on Un+1
N .

17

4.2 Numerical Tests

Here we illustrate the performance of the first-order HLL scheme on the 1D
hydrodynamics equation with plane symmetry and spherical symmetry. In all
the tests shown below, the adiabatic index of the gas is set to γ = 1.4. Copy
boundary conditions are used in all simulations.

Although the numerical scheme evolves the conservative variables U , we are
actually interested in the primitive variables X:

X =

 ρ
u
P

 . (119)

The initial conditions, as well as the final results, are expressed in terms of X
instead of U .

4.2.1 Plane symmetry tests

The two tests shown below solves the Riemann problem with the IC

X =

{
XL if x > x0

XR if x < x0
, (120)

where x0 is a constant parameter.
Numerical solutions are computed by the first-order HLL scheme described

in section 4.1. Exact solutions are computed by the numerical code given in the
end of Chapter 4 of Toro’s book.

Test 1
Computation domain: [0, 1]
Initial conditions:
ρL = 1, uL = 0.75, PL = 1;
ρR = 0.125, uR = 0, PR = 0.1.
Position of discontinuity: x0 = 0.3
Courant factor: CF = 0.5
Number of cells: N = 400
Simulation time: tfinal = 0.2
Results: The solution has a right shock wave, a right traveling contact wave

and a left rarefaction wave. The graphs below show the comparison between
numerical and exact solutions.

18

19

Test 2
Computation domain: [0, 1.2]
Initial conditions:
ρL = 1, uL = 0, PL = 1000;
ρR = 1, uR = 0, PR = 0.01.
Position of discontinuity: x0 = 0.7
Courant factor: CF = 0.5
Number of cells: N = 400
Simulation time: tfinal = 0.012
Results: This is a severe test. The solution consists of a strong shock wave of

Mach numerical 198, a contact surface and a left rarefaction wave. The graphs
below show the comparison between numerical and exact solutions.

20

21

