\qquad Date: \qquad

Make an Inclinometer!

How to Make an Inclinometer:
Materials: Protractor, Straw, Coin, Piece of String, Four Pieces of Tape, Scissors, and a Hole Puncher

[Step I] Cut out the protractor.
[Step 2] Tape the coin to one end of the string.
[Step 3] Slide the other end of the string through the hole at the base of the protractor.
Tape this end of the string to the coin.
[Step 4] On the back, tape the straw to the base of the protractor. Use one piece near each end of the straw.

How to Measure the Altitude Angle to a Star in the Night Sky:

[SI] Looking through the straw, point the inclinometer towards a star.
[S2] The string's position will tell you the angle between the horizon and the star.
Tip: Have a friend read the angle while you are looking through the straw. Important: Do NOT look at the Sun!!

How to Find a Star in the Night Sky:

[SI] Use the star's azimuth coordinate to determine which direction to face.
(The diagram on the back of the page shows you the coordinate's direction.)
[S2] Tilt the inclinometer until the angle matches the star's altitude coordinate.
[S3] Once you have the correct tilt, look through the straw. It should be pointing right at the star!

Tip 1: If it doesn't work, make sure the inclinometer is still tilted at the right angle.
Tip 2: Use a compass to help you figure out which direction to face.
\qquad Date: \qquad

The Altitude-Azimuth Coordinate System

Two diagrams of the altitude and azimuth angles. You are the observer!
Altitude - how high in the sky a star is located (latitude in the sky)
Azimuth - the direction you are facing when looking at a star, such as N, S, E, W, or somewhere in-between (longitude in the sky)

Directions (as azimuth angles)

Reference Azimuth Angles: (see diagram on the right \rightarrow)

North: 0 degrees
South: 180 degrees

East: 90 degrees
West: 270 degrees.

Find the positions of stars, planets, and other objects in the night sky with Stellarium.

The row with the arrow lists the azimuth (Az.) and altitude (Alt.) angles of Polaris. http://stellarium.org/

Polaris (Alrucaba - Cinosura - Tramontana - Yilduz人 UMi - 1 UMi - HIP 11767 - SAO 308 - HD 8890
Type: pulsating variable star, double star (DCEPS) Magnitude: 1.95 (extincted to: 2.20)
Absolute Magnitude: -3.66
Color Index (B-V): 0.63
Magnitude range: $1.86 \div 2.13$ (Photometric system: V)
RA/Dec (J2000.0): $2 \mathrm{~h} 31 \mathrm{~m} 50.73 \mathrm{~s} /+89^{\circ} 15^{\prime} 51.4^{\prime \prime}$
RA/Dec (on date): $2 \mathrm{~h} 55 \mathrm{~m} 20.90 \mathrm{~s} /+89^{\circ}{ }^{\circ} \mathbf{2 0}^{\prime} 28.3^{\prime \prime}$

Az./Alt.: $+359^{\circ} 38^{\prime} 17.3^{\prime \prime} /+31^{\circ} 40^{\prime} 40.2^{\prime \prime}$ (apparent)
Gal. long./lat.: $+123^{\circ} 16^{\prime} 50.0^{\prime \prime} /+26^{\circ} 27^{\prime} 41.7^{\prime \prime}$
Stellarium details about Polaris (the North Star).

