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ABSTRACT
We present parametric fits to the orbital stability boundaries for circumbinary planets over a
parameter space spanning a wide range of different (i) binary mass ratios, (ii) binary eccentric-
ities, and (iii) prograde planet inclinations over an integration time of 3×105 binary periods, a
significant increment in the integration duration of previous studies. Each binary configuration
features an inner region of unstable orbits, an outer region of stable orbits, and a meta-stable
region in-between where orbits can be stable or unstable depending on their proximity to n : 1
mean motion resonances (MMRs). We characterize the inner limit of stability around a binary
with a semi-major axis acrit inside which all near circular orbits are unstable. Beyond ast, all
orbits are stable throughout the integration. Values of ast are typically 13 ± 10% larger than
acrit. Binaries with equal mass ratios have slightly lower stability limits compared to those
with low mass ratios, and the strongest dependence of both stability limits is on eccentric-
ity. The dependences of both acrit and ast on inclination are very weak. For low inclinations
6 40◦, the values of acrit and ast are largely identical to the respective values for coplanar
orbits around the same binary. For non-equal mass binaries, we find regimes in which planets
very distant from the binary can become unstable in the very long run, presumably evidencing
dynamical instabilities aided by secular evolution.
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1 INTRODUCTION

The discovery of circumbinary planets (CBPs) by the Kepler mis-
sion (e.g. Doyle et al. 2011; Orosz et al. 2012; Welsh et al. 2012)
has revealed the resilience of the planet formation process. Perhaps
once a surprising discovery, CBPs have now been established as
not an uncommon phenomenon. The ten currently known systems
of this kind suggest a Neptune-size planet-bearing frequency that is
comparable to that of single stars if coplanarity with the host stars
is assumed (Fressin et al. 2013; Armstrong et al. 2014); however,
if the distribution of planetary inclinations is instead isotropic, the
planet-bearing frequency can increase dramatically (up to ∼ 50%
according to Armstrong et al. 2014).

To date, no CBPs have been found with misalignments greater
than ≈4◦ (Kostov et al. 2014). All currently known systems of
close-in CBPs have been detected by the transit method around
eclipsing binaries, which is strongly biased against misaligned
planetary orbits (Schneider 1994; Martin & Triaud 2014; Kostov
et al. 2014) . Detection strategies within the reach of current obser-
vational capabilities, such as long-baseline searches for precessing
orbits that are in on-and-off transiting configurations (Kostov et al.
2014; Martin & Triaud 2015), transit detection across non-eclipsing
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binaries (Martin & Triaud 2015) and even planet-induced eclipse
timing variations (Borkovits et al. 2003) have not been carried out
systematically. Thus, the fraction of CBPs that are in inclined re-
spect to their host stars is still unconstrained.

Although planetary orbits coplanar with the central binary are
favored by the in-disc formation (and migration) scenario (as the
parental discs themselves are thought to evolve into coplanarity,
see e.g., Foucart & Lai 2013), observationally, the evidence against
the existence of misaligned CBPs is far from conclusive given the
inherent biases of the dominant detection method. The slight mis-
alignment of Kepler-413b (Kostov et al. 2014), in addition to the
suggestion that additional stellar companions might induce mis-
alignment (Muñoz & Lai 2015; Martin & Triaud 2015; Hamers
et al. 2016), opens the possibility for a yet unobserved population
of misaligned planets. Showing that such inclined planets can ex-
ist in stable configurations –and could even be hiding in the Kepler
data– would offer great promise for increasing the occurrence rate
of CBPs, bringing us closer to understanding whether planet for-
mation around binaries is fundamentally different from that around
single stars.

Inclined CPBs can show richer dynamical behavior than
coplanar ones. One crucial property of circumbinary dynamics is
the minimum semi-major axis for which planets can be in a sta-
ble (long-lived) orbit. Interestingly, one of the most notable prop-
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erties of known CBPs is the propensity of these to lie very close
to the semi-major axis below which long-term dynamical stabil-
ity is not possible (e.g., Welsh et al. 2014). The proximity to this
stability boundary, which can be parametrized as a function of the
binary’s orbital properties (Holman & Wiegert 1999), has been in-
voked as tentative evidence for disc-driven migration, which would
bring planets right up to the circumbinary gas disc edge (with those
that migrate further in getting simply ejected from the system). The
dependence of this critical semi-major axis with planet inclination
has not yet been fully explored (although, see Doolin & Blundell
2011). The tantalizing possibility of an undetected population of
CBPs in a wide range of inclinations (brining up the planet occur-
rence rate significantly) underscores the importance of knowing the
minimum allowed proximity to the binary, as it directly affects the
likelihood of detection.

Parametrized stability criteria are of useful tool to quickly as-
sess the plausibility or the expected life time of observed plane-
tary systems. Usually, stability criteria vary according to the mass
regime of interest, differing in functional form for circumbinary
planets (henceforth HW99), planet pairs on close circular orbits
(Wisdom 1980; Gladman 1993), hierarchical triples of compara-
ble masses (Mardling & Aarseth 2001) or hierarchical planet pairs
orbiting a single star (Petrovich 2015). Most of these criteria work
best in coplanarity, having limited applicability at large mutual in-
clinations. In this paper, we address the relatively unexplored long-
term stability of circumbinary orbits using direct N -body integra-
tions, extending previous studies by exploring the dependence of
the stability limits on planetary inclination. Most importantly, we
integrate for a long time, secular in nature.

2 METHODS

2.1 Previous work

HW99 provide an extensive computational study on the stability
limits of circular planetary orbits in general binary systems, pro-
ducing an empirical fit for acrit, the semi-major axis of the inner-
most stable (initially circular) planetary orbit. The compute acrit af-
ter integrating the planetary orbits (via direct N -body calculations)
across a range of binary eccentricities eb and binary mass ratios
µb = M2/(M1+M2), producing a parametric fit of acrit as a func-
tion of eb and µb greatly expanding on the original study of this
problem by Dvorak (1986). There have been exploratory computa-
tional works on inclined circumbinary orbits. Pilat-Lohinger et al.
(2003) explored stability around binaries with equal mass and plan-
ets with inclinations up to 50◦, while Doolin & Blundell (2011) ex-
plored the effect of planetary inclination on stability across a wide
range of binary configurations, without addressing the dependence
of acrit on planetary inclination.

2.2 Setup

2.2.1 Initial orbits

We probe the stability of planets as a function of initial barycentric
radius r0 by direct numerical integration of the binary and planetary
orbits (this is a similar setup to that of Dvorak & Froeschle 1989
and HW99). We work in units where ab = Mb = M1 + M2 = 1
where ab is the binary semi-major axis and Mb is the total binary
mass. We vary both the mass ratio of the binary µb = M2/Mb and
its eccentricity eb. The binary is fixed to live in the x-y plane (with
the binary’s angular momentum pointing in the z-direction) and it is

initialized at pericenter for half of our integrations and at apocenter
for the other half. Planets are massless test particles. Their positions
are evenly spaced in radius (spacing is ∆r = 0.033ab) and evenly
spaced in azimuth (8 angular positions per value of a). We initialize
and integrate a grid of planets for every combination of 9 values
of µb ∈ [0.1, 0.5] , 15 values of eb ∈ [0, 0.7] and 10 values of
i ∈ [0◦, 90◦] using uniform sampling intervals. For each numerical
integration, all planets share the same initial inclination i respect to
the binary. In addition to the introduction of planetary inclinations,
our work differs form preceding ones in the extended duration of
the integrations (see Section below).

The planet velocities are initialized in the azimuthal direction
and are given a magnitude of vφ,0=

√
GMb/r0. This configuration

is equivalent to setting zero-eccentricity Jacobian orbital elements1.
This velocity is slightly smaller than the circular velocity required
for a quasi-Keplerian potential with a quadrupole term:

v2circ(r) '
GMb

r

[
1 +

3

4
µb(1− µb)

(ab
r

)2(
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3

2
e2b

)]
,

(1)

which implies that planets initialized with velocity vφ,0 are in
sub-centrifugal equilibrium, and therefore ay the apocenter phase
in a slightly eccentric orbit of semi-major axis ã0 , i.e., r0 ≈
ã0(1 + ẽ0) and v2φ,0'v2circ(1 − 2ẽ0), where the “artificial eccen-
tricity” (Rafikov 2013; Paardekooper et al. 2012) is

ẽ0(r) = (3/4)µb(1− µb) (ab/r)
2 (1 + 3

2
e2b
)
. (2)

If one numerically integrates the orbit of particles started with with
vφ,0 under a binary potential, the resulting orbits exhibit on av-
erage radial oscillations of epicyclic amplitude ∼ ã0ẽ0, but fast
(forced) oscillations on timescales of order Tb are still present (see
Section 2.2.2 below).

2.2.2 Expected behavior

A brief discussion of secular and dynamical time-scales informs
our expectations from the N -body integrations (e.g., Doolin &
Blundell 2011). As our integration time is significantly longer than
in previous works, we expect to capture some of the long-term ef-
fects predicted by secular theory. In particular, secular time-scales
will be used to justify our choice of the line of nodes Ω=0 for all
our integrations, and short time-scales will be used to inform our
choice of radial spacing ∆r.

2.2.2.1 Long secular time-scales: Over long secular time-
scales (ignoring dynamical instabilities), the orbital dynamics –
represented by the planets angular momentum and eccentricity vec-
tors – can be described by the double-averaged potential per unit
mass truncated to quadrupole order (e.g. Farago & Laskar 2010;
Liu et al. 2015)

Φ2 =
1

8

Gµba
2
b

a3(1− e2)3/2

[
1−6e2b−3(1−e2b)(ẑ·n̂)2+15e2b(x̂·n̂)2

]
,

(3)
which has been truncated to quadrupole order in the semi-major
axes and where n̂ is the direction of the planets angular momen-
tum, and x̂ and ẑ define a coordinate system aligned with the
central binary (x̂ parallel to the binary’s eccentricity vector and ẑ

1 i.e., initial semi-major axis is a = r, defined in a frame where planets
orbit a single object of mass Mb located at barycenter of the binary.
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Figure 1. Constant energy levels on the unit angular momentum sphere for circular orbits (from Eq. 3 evaluated with e = 0 for all orientations of n̂). For
circular binaries (eb = 0, left panel) the motion of the unit angular momentum vector n̂ is restricted to precession around ẑ, the angular momentum vector of
the central binary, while the mutual inclination i (where cos i = n̂ · ẑ) remains constant. At finite eccentricity (eb = 0.4, middle panel), cos i is not strictly
constant, and thus the n̂ vector experiences nutation in addition to precession. For eb 6= 0, there are two additional fixed points around which precession
is possible: n̂ = x̂ and n̂ = −x̂. Thus the unit sphere is divided into two distinct precession regions (red and blue, depicting precession arounf ẑ and x̂
respectively) delimited by a separatrix (in black). For high eccentricity (eb = 0.8, right panel) most of the unit sphere is dominated by precession around x̂,
except for a narrow region which includes the case of binary-planet coplanarity. Star symbols depict the different initial inclinations explored in this study (0◦

to 90◦in intervals of 10◦); all for Ω = 0, i.e., at least initially, all the orbits explored in this work are contained in the red region of the angular momentum
unit sphere.

parallel to its angular momentum vector). In Eq. (3), Φ2 depends
only on the magnitude of the eccentricity vector |e|=e, which as
a result, is conserved: i.e., circular orbits remain circular at the
quadrupole-level of approximation. Our choice of initial Ω=0 for
all planetary orbits implies that all planetary vectors lie on one and
the same plane in the coordinate system defined by the binary. For
eb=0, Φ2 exhibits two equilibrium points (n̂ is aligned or anti-
aligned with ẑ), implying that any initial n̂ will trivially precess
around ẑ at a rate given by dn̂/dt ∝ (n̂ · ẑ)(n̂ × ẑ), i.e., the
mutual inclination between planet and binary is conserved. How-
ever, when eb 6=0, the constant-energy levels in Φ2 exhibit two ad-
ditional (stable) fixed points, implying that n̂ can precess either
around ẑ or around x̂, and that, in general, the mutual inclination
will not be constant (Farago & Laskar 2010; Doolin & Blundell
2011). In Fig. 1, we show the equi-potential contours of Φ2 in
the unit sphere of possible orientations of n̂ (assuming e=0). Our
initial conditions imply that the planet angular momentum vector
n̂=(sin i sin Ω,− sin i cos Ω, cos i) initial lies in the ŷ−ẑ plane,
therefore always living in the region that precesses around ẑ (in
red). This is in contrast with the study by Doolin & Blundell (2011)
in which n̂ is initialized with Ω=90◦, i.e., in the x̂−ẑ plane, which
includes both regimes of precession around ẑ (in red) and x̂ (in
blue). Deviations from the secular behavior are expected close to
the binary – especially for those inclinations close to the separa-
trix in Fig. 1 – both owing to mean-motion resonances as to higher
order terms in the potential (e.g., octupole terms).

2.2.2.2 Short dynamical time-scales: On time-scales of or-
der the planet orbital period, the fast oscillations (averaged out
by the secular approximation) imprint an initial, phase-dependent,
perturbation to the planetary orbits (Fig. 2). Short-term variabil-
ity introduces an intrinsic “fuzziness” into the very definitions
of semi-major axis a and eccentricity e. Oscillation amplitudes
can be described by free and forced eccentricities (acting on
timescales Ω−1

K =
√
r/(GMb) and Ω−1

b =
√
ab/(GMb); see equa-

tions 27 and 39 in Leung & Lee 2013) and only on average does
the free eccentricity coincide with ẽ0 from Eq. 2 (see Fig. 2). In
practice, each particle initialized with azimuthal velocity vφ,0 and

angular phase φ0 will possess a unique free eccentricity efree =
ẽ0 + δẽ(φ0, eb, µb), and a guiding center semi-major axis of ã =
ã0 + δã(φ0; eb, µb), such that ã(1 + efree) ≈ r0 for all φ0. At
closest approach, r = ã(1 − efree) ≈ r0(1 − 2ẽ0) + 2δã, which
defines an intrinsic fuzziness in semi-major axis for all particles
with equal Jacobian semimajor axis a = r0 but with different ini-
tial phases (see the spread in the blue curves in Fig. 2). For eb = 0
and µb = 0.5 we have measured this spread to be δã ≈ 0.01ab at
r = 3ab. This quantity informs our choice of a fiducial radial spac-
ing to be ∆r = 0.033ab throughout this work unless stated other-
wise. Note that orbits around binaries with an equal mass ratio and
high eccentricity may exhibit spreads of up to δã ≈ 0.2ab. When
identifying stability boundaries this uncertainty δã might become
an issue as the initial conditions are usually grouped by Jacobian
semi-major axis a = r0 and not by ã; consequently, the spread
in closest approach might consistently induce ejections for some
values of φ0 but not for others (we do indeed see this effect; Sec-
tion 3.1). We have found that 〈a〉, the median (Jacobian) a (≈ ã)
computed over an initial integration time (a couple hundred binary
orbits), is often a convenient radial coordinate, and a useful label,
for the initial orbits. Whenever 〈a〉 is used in our analysis instead
of a, this will be made explicit in the text.

2.3 Numerical technique

We use the Bulirsch-Stoer (BS) integrator (e.g., Press et al. 1986)
in the MERCURY package (Chambers 1999) to carry out our inte-
grations. The accuracy parameter in the BS scheme set to 10−13.
We work in units where ab = 1. The total integration time is
Tint = 3× 105Tb where Tb = 2π

√
ab/GMb is the period of the

binary with the initial timestep is 10−2Tb. This integration time is
the fiducial value unless stated otherwise. In some specific situa-
tions, we have extended Tint to 4 × 105Tb if some ejections far
from the binary are still taking place close to the end of the orig-
inal integration. In most of these cases, the extra integration time
did not change our results. We choose the ejection distance to be at
25ab. This is between 5 to 15 times the stability limits across the
vast majority of our different orbital configurations. For simplicity,
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Figure 2. Short term evolution of the barycentric radius r/ab of 10 CBPs
(blue lines), emphasizing the difference between Jacobian zero eccentric-
ity and geometrically circular orbits (Pichardo et al. 2005; Youdin et al.
2012). Planet orbits are evolved around a circular, equal-mass binary where
all planets are initialized at the same barycentric radius (r0 = 4ab) and
orbital velocity (vφ =

√
GMb/r0), but with initial azimuthal orienta-

tion φ0 spanning the range [0, π]. The thick orange line (which closely
resembles an average of all individual trajectories) corresponds to the evo-
lution of the same initial conditions, this time around under a potential
that has been expanded to second order in r/ab and time-averaged once
over the period of the binary. In this case, the axisymmetry imposed im-
plies that all orbits overlap, and the resulting trajectory is very closely de-
scribed by a Keplerian orbit of eccentricity ẽ0 ≈ 0.014 and semi-major
axis ã0 = r0/(1 + ẽ0) ≈ 3.945ab (see text). averaged potential. The
spread in barycentric radius at pericenter is well described by the quantity
δã discussed in the text.

we do not consider direct collisions onto the stars. The distinction
between ejections and collisions in this case may be superfluous,
as particles with eccentricities high enough to collide with one of
the stars are in most cases already in trajectories leading to ejec-
tions. This is consistent with the analytic arguments of Smullen
et al. (2016), who explained that test particles near the stability limit
typically cannot get too close to either star while still conserving
the Jacobi constant. Their numerical results, as well as those from
Sutherland & Fabrycky (2016), support this claim, as they find col-
lisions are infrequent.

2.4 Analysis

We define a “long-term stable” barycentric radius r as that in which
all (16) coorbital planets survive the entire length of the integration.
The distance acrit is the closest distance to the binary that is long
term stable. HW99 and Dvorak (1986) originally studied this prob-
lem in a similar way, the latter referring to acrit as the Lower Criti-
cal Orbit (LCO). Dvorak (1986) also introduced the Upper Critical
Orbit (UCO), the furthest orbital distance at which there are still
ejections at the end of the integration. In this work, we refer to this
quantity as ast, which also corresponds to the orbital distance out-
side of which orbital stability is met for all values of r0, i.e., at ast
and beyond, all planets in our grid survive the integrations. Note
that ast is almost always located just outside the n : 1 MMR where
the outermost ejection occurs.

Table 1. Stability Regions for Typical Configuration

Region Location or Width [ab]

(0) Unstable Inner Region 6∼ 2.0− 4.2

(1S) 1st Island of Stability (ends at acrit) 0.07± 0.03

(1U) 1st Island of Instability at n : 1 MMR 0.10± 0.03
(2S) 2nd Island of Stability 0.36± 0.10

(2U) 2nd Island of Instability at next n : 1 res. 0.03± 0.03

(3) Stable Outer Region (starts at ast) > acrit + (0.3± 0.3)

3 RESULTS

3.1 Patterns of Stability

The long-term planetary dynamics exhibit a nearly ubiquitous pat-
tern of stability, in which three qualitatively different regions can
be identified as a function of median semi-major axis a (Table 1).
We describe these three stability regions below.

Region 0 – Unconditional instability: Nearly all of the orbits in
the innermost region (within a.acrit) eject on timescales shorter
than 103Tb. For a < acrit, we find that the ejection time follows
the relation log Tejec ∝ a, and it rises steeply when a approaches
acrit. Figure 3 shows the ejection time Tejec as a function of planet
semi-major axis around a binary of µb=0.2 and eb=0.2 for i=0◦

(left panel) and i=20◦ (right panel). Long-term stable orbits are
depicted by blue circles, nominally placed at Tejec=Tint. In both
cases (i = 0◦, 90◦), acrit∼3ab roughly defines a boundary be-
tween long-term stable orbits and orbits for which Tejec ∼ 102-
103Tb. Interestingly, some long-term stable orbits can be found for
a < acrit, but the stability requirement fails to pass for one of the
two binary binary configurations considered (either binary phase at
apocenter or at pericenter at t=0). This can be explained by the
intrinsic fuzziness in the definition of all a close to the binary (Sec-
tions 2.2.1 and 2.2.2). As discussed in Sec 2.2.2.2 the dependence
of the short-term orbital evolution on the initial phase of the orbit
can introduce patterns in which, for the same r0, only certain initial
mean anomalies result in ejection while others turn out the be long-
term stable. In agreement with the fitting formula of HW99, these
partially stable orbits are excluded by critical boundary represented
by acrit.

Regions 1S, 1U, 2S, 2U - Conditional stability: In the region
where acrit . a . ast, most numerical experiments exhibit a
shared pattern, which consists (from small to large a) of: one wide
stability strip or “island” (1S) followed by an unstable one (1U),
further accompanied by another stable region (2S) and by one fi-
nal, narrow unstable strip (2U). This general pattern emerges in
about 75% of our numerical experiments. The 1S and 1U islands
are typically of the same width in a. These regions can be seen in
the examples of Fig. 3. The 1U region is often located near the first
n : 1 MMR outside 1S. Meanwhile, the 2U region is located near
the first n : 1 MMR available after 2S. The 2U island is signifi-
cantly narrower than 1S. It thus becomes apparent that subsequent
instability islands (3U, 4S,...; e.g., see HW99; Kostov et al. 2013)
are not picked up because of the coarse initial radial spacing ∆r
(see below).
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Figure 3. Both: Binary µb = 0.2, e = 0.2. Top: i = 0◦. Bottom: i = 20◦. The distribution of surviving planets (blue) and ejection times of unstable planets
(red) illustrate the different regions of stability along with the corresponding values of acrit and ast in this typical case. Additionally, the faded points show
what would be added with a resolution 3 times finer in ap. For these configurations – as with most cases – not much is added. Vertical lines mark off ast –
which hardly changes in the inclined case, and acrit – which moves from the 1st island of stability just inside the 5 : 1 MMR in the i = 0◦ case to the 2nd just
outside in the i = 20◦. The value of acrit from the fitting formula of HW99 is also marked off as a dashed vertical line and shows agreement with our values
for both cases. Overall, this coplanar case and the corresponding case at i = 20◦ are mostly the same. One difference is that the 2nd island of instability in
the inclined case is slightly stronger than that in the coplanar case.

Region 3 - Unconditional stability: In most cases, beyond the
second strip of instability, all orbits in our integrations are stable.
This defines the semi-major axis ast (Section 2.4). In less than
5% of configurations, an additional (third) strip of instability ap-
pears (Fig. 4 shows one such case). No configurations in our pa-
rameter space had a fourth strip of instability. Since each succes-
sive unstable strip has a thinner width and longer ejection time
than the previous one, it is possible that longer integration times,
and finer sampling in a would reveal this vanishingly small unsta-
ble regions. These findings apply to our fiducial radial spacing of
∆r=0.033ab. We have experimented with different values of ∆r
(down to ∆r=0.01ab; see Section 3.2 below), no fourth island of
instability was found for finer samplings.

3.2 Robustness and convergence

The values obtained for acrit and ast can potentially depend on our
total integration time and their precision may also depend on the
choice of radial spacing. In this section, we explore the robustness
of our results when varying our fiducial values of tint and ∆r.

3.2.1 Convergence of acrit with integration time

X We extended the integrations in the vicinity of acrit by a factor
of 1000 to 3× 108Tb across our parameter space for two different
inclinations: i = 0◦ and i = 30◦. In these two cases, we found no
significant difference in the resulting values of acrit. In particular,
for i = 0◦, we largely reproduce the HW99 results for acrit, in-
cluding their parametric fit of acrit as a function of eb and µb. we
have confirmed that the integration time used by HW99 of 104 Tb

is sufficient to yield the same value of acrit in 90% of the cases to
within ±0.1ab.

The fiducial spacing of ∆r=0.033ab suffices for identifying
the innermost region of stability and to detect narrow instability
islands/patches outside this central region as well as the widths of

the innermost islands of instability. Beyond this fiducial ∆r (exper-
imenting with higher resolutions down to 0.005ab), we have found
no significant differences, thus the value of acrit can only improve
in precision, yet not in accuracy. On the other hand, lower reso-
lutions do have trouble in pinpointing acrit, and furthermore, they
can miss altogether some of the inner islands of stability.

As a final convergence test, we explored the finer structure
around acrit over a very long time. We extended a subset of our con-
figurations to integration times of tint = 109 Tb (now approaching
a fraction of the physical age of a close stellar binary). for rings
of test particles with r0 = acrit (as determined by the runs with
fiducial integration times). The binary parameters µb and eb are
both sampled in intervals of 0.1, and the binary initial phase is set
to periapse only. We evaluate i at two angles: 0◦ and 30◦ (40 con-
figurations for each). We find that the long-term stability at acrit
persists over timescales much longer than our fiducial experiments.
Some isolated ejection are still possible. In the coplanar configura-
tions, for example, 20 out of 40 result in at least one ejection. Of
these, 90% had an ejection before 4 × 107Tb. In the inclined con-
figurations, 22 out of 40 result in at least one ejection. Of these 90%
had an ejection before 5.5× 107Tb. Of all the configurations with
at least one ejection (42 out of 80), only 10 have more that half of
the planets (out of 8 possible) eject. These results give further re-
assurance that acrit – for inclined and coplanar orbits – is a good
reference distance for the innermost stable circumbinary orbit for a
significant fraction of the lifetimes of these systems.

3.2.2 Convergence of ast with radial spacing

In contrast with acrit, ast can depend critically on both tint and ∆r.
A time-converged determination of ast can be assessed by taking
our long integrations and replicating our computation ast at inter-
vals [0, t] for different t < tint. We define the “required integra-
tion time” as the shortest t for which ast is indistinguishable from
the value of ast obtained from the full length integration [0, tint].
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Figure 4. Both: Binary µb = 0.2, e = 0.1. Top: i = 0◦. Bottom: i = 50◦. See Figure 3 for a description of the plot. In this extreme case, there is a significant
difference between the coplanar case and the corresponding case with i = 50◦. Whereas the coplanar case has no islands of instability with normal resolution,
the inclined case has three such islands. This results in a wide gap between acrit and ast. For the coplanar case, finer resolution reveals a very thin island at
the 5 : 1 MMR. Though, since it does not appear with higher resolution, we do not consider it significant. Another unusual aspect of the inclined case is a
trace of an island of instability at the 9 : 2 MMR. We did not explore this feature. Usually, the differences between coplanar orbits and inclined orbits around
a particular binary configuration fall between the lack of differences in Figure 3 and the drastic differences in this figure. For a typical case, acrit from the
coplanar case eventually overtakes the 1st island of stability at a sufficient inclination (∼ 30 − 40◦), while a new 2nd island of instability arises at the next
n : 1 MMR.
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Figure 5. Distribution of required integration times for each value of ast across the 1350 configurations in our entire parameter space. We define the required
integration time to be the minimum time need to identify the same value of ast that the longer integrations of 3× 105Tb (the solid line) find to within 0.1ab.
For 69% of the simulations, 50, 000 Tb (the lower dashed line) would be sufficient to identify the same ast. For 91% of the simulations, 200, 000 Tb (the
upper dashed line) would be sufficient. Configurations with smaller values of ast and smaller inclinations have lower required integration times on average.

Fig. 5 depicts the required integration time for each determined
value of ast corresponding to each of the different configurations
tested in this work (1350 binary and inclination configurations). For
the smallest values of ast (typically for small eb), the required inte-
gration time is about 15, 000 Tb, meaning that a few times 104 bi-
nary orbits (as in HW99) would be sufficient to find a well-defined
value of ast. However for about 50% of the configurations (espe-
cially for those that result in ast & 3ab) the required integration
time can extend up to 300, 000 Tb. The required integration time
begins to converge as it approaches the integration time that we

used across the majority of our parameter study. Running the inte-
grations for the final 100, 000 Tb only changes ast for about 10%
of our configurations.

We experimented with longer timescales of 5 × 105 Tb for
those configurations that were still resulting in a large number of
ejections toward the end of the integration (i.e., ongoing ejections
at the last measurable island of instability at t ∼ teq). In high incli-
nation configurations (i & 70◦), the extra integration time produces
an additional island of instability and thus, increases ast in about
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one-third of all such cases. For low inclinations, the extra integra-
tion time very rarely changes ast.

Longer integrations may result in additional ejections at
greater distances than the determined value of ast. This introduces
ambiguity to the identification of ast with the boundary that gives
way to “unconditionally stable orbits”. If these ejections are “iso-
lated” (i.e., one or two planets ejected for one value of r0 and no
neighboring ejections) such that it is impossible to identify an un-
stable strip with unambiguous width, then the value of ast in un-
changed. As seen in Fig. 5, only a very small fraction of configura-
tions suffer ejections after 3× 105Tb. Similarly, only a small frac-
tion of systems exhibit ejections at distances greater than ∼ 4.5ab,
showing that, at least statistically, ast can be properly determined
for the value of ∆r chosen.

The value of ast can exhibit some dependence on ∆r. In fact,
a finer radial sampling can uncover narrow, high-order MMRs that
eject planets only after a very long time. Since the successive is-
lands of instability have thinner widths, the fiducial spacing of
∆r = 0.033ab might be overlooking them altogether. We chose
several configurations representing a variety of different parame-
ters across our entire parameter space and integrated them out to
either 2 × 107 Tb or 2 × 108 Tb with a 3 times higher resolution
in semi-major axis of ∆r = 0.011. We find that the characteris-
tic structure of stability from our shorter integrations remains over
these longer timescales. The widths of the unstable islands and the
extent of the inner unstable region increase slightly, but not by an
appreciable amount. In general, the structure of stability from in-
tegrations on the order of one hundred thousand binary orbits is a
valid representation of the orbital stability around a stability over
its lifetime.

In order to further isolate the effect of finer radial sampling, we
ran a few long-term integrations of (tint = 109Tb) with radial coor-
dinates r0 in the vicinity of the innermost n : 1 MMR that was sta-
ble in our fiducial integrations (spanning a width of 0.02ab with a
spacing of ∆r = 0.005ab). For each value of r0, we used the same
parameter space of 80 configurations in µb, eb, and i and initialize
planets only φ0=0◦ and φ0=180◦. As expected, we find additional
ejections beyond ast (as determined by the runs with fiducial spac-
ing), although none of the φ0 = 180◦ cases eject. In several con-
figurations, these additional ejections are rare. For example, only
3 of the 40 coplanar integrations result in additional ejections. In
contrast, inclined configurations exhibit additional distant ejections
in 11 out of 40 cases. These new island beyond the nominal ast
have widths of about 0.01ab on average (i.e., partially unresolved
by our spacing of 0.005ab). For binaries with semi-major axis of
∼ 0.2 AU (e.g.,Kepler-16; Doyle et al. 2011), this instability region
would have a width of . 0.002 AU or 12 Neptune radii. Repeating
the analysis leading to Fig. 5, we find that the minimum ejection
times of these islands are almost always above 106 Tb, with very
few ejections occur above 108 Tb.

3.3 Outlier outcomes

A subset of binary configurations have a small range of high incli-
nation orbits that cannot be classified according to the stability pat-
tern described in Section 3.1. At each inclination of i > 50◦, there
is a narrow range of binary eccentricities (∆e 6 0.05) that have
uncharacteristically large values of ast for unequal-mass binaries.
For the vast majority of configurations, the maximum value of ast
is . 4.5 (in the vicinity of an orbital period of 9Tb). Meanwhile,
the “peculiar” configurations yield values of ast that correspond to
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Figure 6. The configurations with µb 6 0.4, e = 0.4, and i = 60◦ have
much larger values of ast than those across the rest of our parameter space.
For µb = 0.1, a standard integration time of 3 × 105Tb (lower blue line)
reveals thin islands of stability with widths of 0.07± 0.03 near each n : 1
MMR from n = 6 to n = 16. These islands are embedded in an otherwise
completely unstable region out to ast = 6.6. Extending the integration to
2 × 108Tb (upper light blue line) shows that the middle islands of sta-
bility between n = 9 and n = 13 all eject. It is unclear whether the inner
and outer islands would survive if we further extended the integration. The
stable orbits at n : 1 MMRs with n > 9 are more sharply concentrated at
the MMRs compared to those at the lower order islands. Lastly, an integra-
tion time of 5 × 105Tb (middle black line) is needed to identify ast. For
this particular case where µb = 0.1, eb = 0.4, and i = 60◦, only the
innermost and outermost islands of stability survive the longer integration

orbital periods between 10-20 Tb, in addition to exhibiting distinct
stability patterns for regions inside ast.

The measured value of acrit does not change in these outlier
configurations, which exhibit the first stability island (1S in Sec-
tion 3.1) in all cases. However, ast can be dramatically changed;
whereas typical configurations have at least one additional wide
region of stability between acrit and ast,the outlier configurations
may have their innermost unstable region 1U extend all of the way
out to ast. Furthermore, when the additional stability islands (2S
and beyond) do appear, they are narrower than in the typical cases,
and when integrating for longer times, they also start disappearing
as ejections continue to take place in the long run. Figure 6 shows
an example of this unusual pattern of stability over an integration
time of 2× 108 Tb.

These unusual measurements of ast appear as local spikes in
an otherwise smooth and monotonic curve of ast as a function of
eb. In the absence of these additional peaks, the curve of ast as a
function of eb is qualitatively similar to that when i = 0◦. Figure 7
shows that these spikes in ast at particular values of the binary ec-
centricity eb for three different mass ratios µb =0.1, 0.3 and 0.5.
Only when µb = 0.5 (equal-mass binary) the spike is absent. For
example, the binary configuration of µb = 0.1 and eb = 0.25 has
ast = 6.9ab when i = 50◦. If only the mass ratio is changed to
µb = 0.5, then ast = 3.4ab.

From the figure it can be seen that the magnitude and width
of this peak appears to grow with decreasing µb. It is interest-
ing to note that there might be a relation between the appear-
ance of these unusual peaks with the presence a significant oc-
tupole term in the gravitational potential. The relative strength of
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2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
S
e
m

im
a
jo

r 
A

x
is

 [
a

b
]

 i=50 ◦

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.5

0.0

0.5

1.0

a
50

◦
−

 a
0
◦

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Eccentricity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

µ=0.10

ast

acrit

µ=0.30

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

O
rb

ita
l P

e
rio

d
 [T

b ]   

µ=0.50

Figure 7. Top: The dependence of ast on binary eccentricity for different binary mass ratios 0.1, 0.3, and 0.5 for planets with inclination of i = 50◦.
Bottom: How the stability limits at i = 50◦ compare to stability limits for coplanar orbits. There is no strong dependence for how either stability limit changes
at high inclination as a function of eccentricity. In some cases, acrit increases. In other cases, acrit decreases. Neglecting the spike at e = 0.25, ast increases
by a larger amount for low eccentricity binaries. Around high eccentricity binaries, ast increases by a smaller amount, if at all. For µb 6 0.4, there is a spike
in ast that corresponds to one of the outlier configurations described in Section 3.3.

the octupole potential respect to the quadrupole contribution (Eq. 3)
scales as eb(ab/a)

√
1− 4µb(1− µb) (see appendix of Petrovich

& Muñoz 2016; see also Leung & Lee 2013), and thus vanishes
when µb = 0.5. It is well known that the quadrupole potential
of Eq. (3) conserves eccentricity on secular timescales (e.g. Mori-
waki & Nakagawa 2004; Farago & Laskar 2010) and that a non-
vanishing “forced eccentricity” acting on the circumbinary orbits
requires a finite octupole term, as provided by an unequal-mass bi-
nary (Moriwaki & Nakagawa 2004). A slowly varying planetary
eccentricity due to a significant octupole term might explain some
of these features, especially if the islands of stability are observed
to gradually degrade over secular timescales. In such case, the sec-
ular evolution would trigger the dynamical instability as planetary
orbits with a > acrit might reach pericenter values ≈ acrit during
the high eccentricity phase. This type of “late-onset” dynamical in-
stability aided by secular evolution has been recently explored in
the case of hierarchical triple systems by Grishin et al. (2016). In
future work, we will explore how octupole-level secular effects can
render distant circumbinary planets long-term unstable.

Table 2 summarizes the values of ast for each of the or-
bital configurations that yield unusual values of ast. Binaries with
low values of µb have the strongest spikes in ast. Binaries with
µb ≈ 0.5 show little to no increase in the values of ast across the
different inclinations explored. The spikes in ast are larger at incli-
nations of 50◦ and 60◦, and they do not appear for i 6 40◦. At the
current sampling density of i (in intervals of 10◦), all these spikes
appear for one specific inclination, ast depending very weakly on i
otherwise (see Section 3.4 below).

Table 2. ast for Outlier Configurations

i eb µb = 0.1 0.2 0.3 0.4 0.5

50◦ 0.25 6.93 6.93 5.93 4.90 3.43
60◦ 0.40 6.60 6.20 5.57 4.87 3.80
70◦ 0.45 5.60 5.30 4.43 4.10 3.80
80◦ 0.15 5.27 5.27 5.00 3.73 3.37
90◦ 0.20 5.30 5.30 4.67 3.73 3.37

These are the configurations that break the usual pattern in ast.
Each i > 50◦ has an eccentricity that results in a set of outlier cases.
The values of ast are given at five mass ratios for each combination.
The µb = 0.5 cases are unaffected. For typical cases, ast would be
no more than 0.7ab larger in the high mass ratio case compared to the
equal mass case. These configurations have far larger values of ast.

3.4 Fitting formulae for stability boundaries

3.4.1 Dependence of acrit and ast on eb and i

The strongest dependence of both stability limits is on the eccen-
tricity of the binary eb, with mutual inclination i playing a sec-
ondary role (aside from the exceptional cases described in Sec-
tion 3.3). Both acrit and ast increase monotonically with eb; acrit
grows from ∼ 1.9ab (when eb ≈ 0) to ∼ 4.3ab (when eb & 0.7)
Similarly, the value of ast is lies between 2ab and 4.5ab. There
are general trends as a function of mass ratio as well. For eb fixed,
acrit grows with µb until peaking at ≈ 0.3 and leveling off for µb

between 0.3 and 0.5; acrit in turn, is maximum for µb = 0.1. Ad-
ditionally, ast grows in a step-function fashion, in consistency with
its value being determined by the nearest n : 1 MMR.

We have found that both acrit and ast depend rather weakly on
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Figure 8. Comparison of our fits for acrit, ast, and the fitting formula from HW99. Our fit for acrit (lower blue line) agrees very well with their fit (dashed
black line) for µb 6 30◦. However, our fit yields about 10% lower values of acrit for equal mass binaries with high eccentricity. The fit for acrit matches the
data points well (upside-down triangles) for all mass ratios. Since the values of ast are typically just above n : 1 MMRs, the fit for ast is not able to reproduce
the step-function nature of the data points (right-side-up triangles) as well with a second-order polynomial. However, ”rounding” the fit to the nearest n : 1

MMR offsets this issue in most cases. H99 used lower resolution which explain the small discrepancies
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Figure 9. See Figure 8 for a description of the plot. At a low inclination of i = 30◦, acrit is mostly unchanged. Thus, the fit from HW99 has a similar level
of agreement in these cases as it does in the coplanar cases. In about half of all cases, ast remains the same as in the coplanar case. In the other half of cases,
ast increases to the next n : 1 MMR. This creates a wider gap between ast and acrit on average.

the mutual inclination i and that this dependence is almost negligi-
ble for i . 40◦. This is especially true for acrit. Thus, for low-to-
intermediate inclinations, the innermost stable circumbinary orbit
is well characterized by the coplanar case, and therefore well de-
scribed by the (coplanar) parametric fit of HW99 (within the error
of the linear-regression fit). At higher inclinations (i & 40◦), there
is a weak an nearly monotonic dependence of acrit on i for fixed
eb and µb; however, this trend can be decreasing or increasing for
different combination of binary parameters. This is particularly ev-
ident in the circular binary case in Fig. 10, where acrit grows with
inclination for µb = 0.1, but decreases with i when µb = 0.5.
Previous work by Doolin & Blundell (2011) shows consistent re-
sults with these non-trivial trends (see Section 4 below). The values
of ast show similar general trends for low and high inclinations.
However, for i above∼ 40◦ the outlier outcomes described in Sec-
tion 3.3 imply that for certain combinations of eb, µb and i exhibit
a distinct long-term behavior which does not change acrit, but that
drastically modifies the values of ast. In Section 3.3, we have spec-
ulated that these unusual dynamics might be the result of long-term
secular effects.

3.4.2 Fitting formulae

We present fits to acrit and ast as functions of mass ratio and eccen-
tricity at different fixed inclinations. As the dependence of the crit-
ical boundaries on inclination is complex – even when monotonic
in i for fixed eb, µb, the sign of the change can depend sensitively
on the specific value of eb and µb – a global multi-dimensional fit
for the three independent variables eb, µb and i does not provide
any useful insight. Instead, for fixed values of i we provide fits of
the form

acrit,st(eb, µb; i) = A+Beb+Ce2b+Dµb+Eebµb+Fµ2
b+Ge2bµ

2
b

(4)
obtained from least-squares fitting on six variables: eb, e2b, µb, µ2

b,
ebµb and e2bµ

2
b (HW99). As the outliers cases described in Sec-

tion 3.3 complicate the dependence of acrit and ast on inclination
even further, we do not attempt this parametric fit for i > 40◦.

Table 3 lists five set of 7 least-squares coefficients required
to specify the fit for acrit as in Eq. (4) for 5 different inclinations.
Similarly, Table 4 lists the coefficients that specify the parametric
fit for ast for the same 5 inclinations. The two fits for acrit and ast
in the coplanar case work equally well with average residuals of
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Figure 10. The dependences of acrit and ast on planetary inclination for binary mass ratios µb of 0.1, 0.3, and 0.5, and eccentricities of 0.0, 0.15, and 0.6.
In each pair of lines, the top redder line refers to ast and the bottom blue line refers to acrit. For low eccentricities, acrit and ast are mostly unchanged at
i 6 20◦. For i > 30◦, ast at each µb increases by ∼ 0.3ab except in the equal mass case. For high eccentricities, both acrit and ast are mostly constant
across all prograde inclinations.

Table 3. Fitting Formulas for acrit at Low Inclinations

i0 const. e e2 µb eµb µ2b e2µ2b

HW99 1.60± 0.04 5.10± 0.05 −2.22± 0.11 4.12± 0.09 −4.27± 0.17 −5.09± 0.11 4.61± 0.36

0◦ 1.66± 0.07 5.04± 0.26 −2.28± 0.25 3.15± 0.39 −2.72± 0.76 −4.16± 0.55 −0.03± 1.71

10◦ 1.79± 0.06 4.43± 0.23 −1.76± 0.22 2.88± 0.35 −1.47± 0.68 −4.02± 0.49 −2.94± 1.54
20◦ 1.92± 0.06 4.11± 0.23 −1.57± 0.22 2.34± 0.35 −0.66± 0.68 −3.37± 0.49 −4.23± 1.53

30◦ 2.04± 0.06 3.19± 0.23 −0.86± 0.22 2.43± 0.35 −1.14± 0.68 −4.06± 0.49 −7.00± 1.54

40◦ 2.23± 0.08 2.23± 0.30 0.06± 0.29 1.41± 0.46 3.41± 0.90 −2.78± 0.64 −12.27± 2.02

Each least-squares fit has the form of acrit(e, µb, i = i0) = A +Be + Ce2 + Dµb + Eeµb + Fµ2b +Ge2µ2b.
The fit from HW99 is given for comparison.

about 2% and maximum residuals 8%. For the inclined cases, the
fits for acrit work much better than those for ast because the fits
are unable to reproduce the step function nature of ast. Like the
coplanar fit for acrit, the fits for acrit for the inclined orbits have
residuals of about 2% with maxima of no more than 8%. Unlike
the coplanar fit for ast, the fits for ast for the inclined orbits have
residuals of about 3% with maxima typically between 12 to 20%.

4 DISCUSSION

Parametrized stability boundaries provide a rapid assessment of
the viability of specific orbital configurations (HW99; Mardling
& Aarseth 1999; Petrovich 2015). In the context of circumbinary
planets, these stability boundaries also inform us about constraint
and obstacles to planet formation and planet migration. The appar-
ent pile-up of planets near acrit (e.g., Welsh et al. 2014) might in-
dicate either a preferred planet formation site, or a location where
planet migration stalls (e.g. Nelson 2003; Kley & Haghighipour
2014). In addition to the existence of acrit, the presence of mul-
tiple instability islands due to high-order MMRs with the central
binary pose a (slower, long-term) threat to the stability of planets
(e.g., Kostov et al. 2013; Popova & Shevchenko 2013), which in-
dicates that the eccentricity damping that results from planet-disc

interaction overcomes any resonant excitation and/or that migrating
planets cross these islands too quickly for the resonance to matter.

The yet unclear nature of the protoplanetary gas discs that give
birth to circumbinary planets justifies studying the associated sta-
bility boundaries under significant mutual inclinations. While some
discs around close binaries seem to be well aligned with their hosts
(Czekala et al. 2015, 2016), wider configurations (Brinch et al.
2016) do not appear to obey this constraint, nor have they had
enough time to evolve into coplanarity (Foucart & Lai 2013). In
addition, the possibility of external mechanisms being responsible
for a slow misalignment of planets around the most compact bi-
naries (Muñoz & Lai 2015) further support the need for updated
stability criteria.

Our results confirm the previous numerical explorations of
HW99 of circumbinary planet stability in coplanarity (Fig. 8). We
further assess the ejection times associated with the inner boundary
acrit and the outer boundary ast; confirming that integration times
of 104Tb is roughly sufficient to confidently identify acrit, although
much longer integration times are required to capture ejections at
different high-order MMRs. The values of acrit of HW99 are also
valid (within the uncertainties of their parametric fit) for inclined
planets when i . 30◦. At higher inclinations, however, the evo-
lution of both acrit and ast show a non-trivial dependence on i.
We often find constant acrit with i up to 20◦ or 40◦, while fol-
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Table 4. Fitting Formulas for ast at Low Inclinations

i0 const. eb e2b µb ebµb µ2b e2µ2b

0◦ 1.98± 0.09 6.45± 0.33 −3.93± 0.32 2.31± 0.50 −5.47± 0.98 −2.95± 0.70 6.22± 2.21

10◦ 2.43± 0.11 5.29± 0.42 −3.38± 0.40 0.94± 0.63 −2.47± 1.23 −1.74± 0.88 1.61± 2.78
20◦ 2.39± 0.11 5.43± 0.43 −3.60± 0.41 1.41± 0.65 −2.44± 1.28 −2.44± 0.92 1.60± 2.88

30◦ 2.54± 0.11 4.85± 0.42 −3.07± 0.40 0.90± 0.63 −1.21± 1.23 −1.81± 0.88 −0.96± 2.78

40◦ 2.85± 0.14 4.08± 0.53 −2.56± 0.50 0.30± 0.80 −0.22± 1.56 −1.65± 1.12 −1.31± 3.52

Each least-squares fit has the form of ast(e, µb, i = i0) = A +Be + Ce2 + Dµb + Eeµb + Fµ2b +Ge2µ2b.

lowed by an increase of the stability boundary of i & 40◦. Some
cases do not follow this trend. When µb = 0.5, for example, may
exhibit entirely different trends (Fig. 10). These trends are also in
agreement with the work of (Doolin & Blundell 2011), which is
the most similar calculation to the one presented here (despite the
differencein the choice of the initial planetary line of nodes; see
Section 2.2.2 and Fig. 1). In the region of parameter space for
which both works should be equivalent (planetary nodal circula-
tion; red region in Fig. 1) we find qualitatively consistent results:
acrit shrinks with i for low eb and µb = 0.5; acrit grows with i
for low eb and µb < 0.5; acrit is roughly indifferent to (or erratic
with) i for eb > 0.2. Those authors do find significant stabiliza-
tion for retrograde planetary orbits, a regime that we have not ex-
plored here. In regards to the values of ast it is difficult to compare
both studies, although the rough stability structure outside acrit ex-
hibits the same features. Interestingly, their integration time of only
5 × 104 Tb implies that – according to Fig. 5 – they should have
missed islands of instability for 31% of the configurations in the
mutually overlapping parameter space.

This general dependence on mutual inclination is in rough
consistency with the results of triple system stability of (Petrovich
2015) (in a different mass regime), who found no effect of mu-
tual inclination for i . 20◦, a slight stabilizing effect (closer or-
bits are possible) for 20◦ . i . 40◦, and a destabilizing effect for
i & 40◦. Interestingly, in the widely used triple system stability cri-
terion of Mardling & Aarseth (1999) (yet for an entirely different
mass regime) mutual inclination works always a stabilizing factor.

The last stable circular orbit bears some resemblance to the
“truncation radius” of circumbinary discs (Artymowicz & Lubow
1994; Miranda & Lai 2015). The truncation of inclined discs ob-
tained by Miranda & Lai (2015) shrinks with i, naively pointing
toward inclination as responsible for increased stability. Neverthe-
less, that derivation is based upon finding on a balance between
the disc’s internal viscous torques with the external tidal torques
exerted by the binary, which are indeed weakened by inclination.
However, in N -body computations, there is no diffusive element,
and although inclined tidal torques at a given radius might be weak-
ened, this will, at most, delay ejection, but not prevent it.

5 SUMMARY AND CONCLUSIONS

We used numerical N -body integrations to analyze the stability of
circumbinary planets for different combinations of binary param-
eters (eccentricity and mass ratio) and to provide parametric fits
to critical stability boundaries in this type system. We character-
ize the inner limit of stability around a binary with a semi-major
axis acrit inside which all near circular orbits are unstable. Beyond
this distance, additional unstable regions appear at islands centered

on all n : 1 MMRs exterior to acrit. We find that each succes-
sive island has a thinner width and exponentially larger ejection
timescale. Since the levels of instability quickly decay after just
the first few islands, we are able to measure the outer boundary of
the meta-stable region with a semi-major axis ast that is typically
located just outside an n : 1 MMR.

This work extends previous studies in two ways: (1) we con-
sider a wide range of planetary inclinations (0◦ to 90◦) and (2) we
integrated over timescales of 3 × 105 and, in some cases, up to
109 times the binary orbital period Tb. These integrations times
are up to orders of magnitude longer than previous studies and
have enable us to test probe the weakest mean motion resonances
that produce ejections on very long timescales. In addition, these
long integration times probe into orbital evolution of planetary or-
bits on secular timescales, which for inclined systems, can result in
non-trivial behavior impossible to capture over shorter integration
times. Finally, integration times of 109 binary orbits can represent
a significant fraction of the true lifetime of the stellar binaries with
physical semi-major axes of a fraction of 1 AU, such some of the
close eclipsing binaries known to host planets in the Kepler catalog
(for which Tb ∼ 0.1yr).

We have provided parametric fits to two main stability bound-
aries around eccentric binaries. Our main findings are:

• Orbital fits of HW99 are still largely valid in moderately inclined
cases (up to i ∼ 30◦, but at high inclinations, their applicability is
diminished.
• Parametric fits to stability boundaries do not respond to inclination

in a trivial/monotonic manner, and inclination does not necessarily
act as a stabilizing agent (i.e., by reducing the critical radii acrit) as
some stability criterion in the literature may imply.
• Our long integrations have allowed us to probe into the secular

regime of orbital evolution. We have found a portion of parameter
space that continuously degrades the stability of inclined circumbi-
nary planets, moving the UCO boundary acrit to wider orbits. We
postulate that this effect is the result of an “external Kozai” effect,
which only takes place when µb 6= 0.5.
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Muñoz D. J., Lai D., 2015, Proceedings of the National Academy

of Science, 112, 9264
Nelson R. P., 2003, MNRAS, 345, 233
Orosz J. A., Welsh W. F., Carter J. A., Fabrycky D. C., Cochran

W. D., et al. 2012, Science, 337, 1511
Paardekooper S.-J., Leinhardt Z. M., Thébault P., Baruteau C.,

2012, ApJ, 754, L16
Petrovich C., 2015, ApJ, 808, 120
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