How many times more solar energy does Minneapolis receive during a day in summer day vs. winter?

- Pick up today's Doodle Sheet
- Pick up past assignments in back
- Grades are posted
- Wednesday:
 - TIMESTEP
- Thursday:
 - Study session until 3 pm only
 - Colloquium ??
- Observing:
 - Venus, Moon, Mercury(!)
 - ISS orbital passes

Orbital Passes of the ISS

Data	Brightness	Start			Highest point			End			
Date	(mag)	Time	Alt.	Az.	Time	Alt.	Az.	Time	Alt.	Az.	ľ
04 Feb	-1.5	19:10:50	10°	Ν	19:12:01	14°	NNE	19:12:01	14°	NNE	١
05 Feb	-1.3	19:58:52	10°	NW	19:59:53	18°	NW	19:59:53	18°	NW	1
06 Feb	-3.2	19:11:24	10°	NNW	19:14:34	38°	NE	19:14:58	36°	ENE	١
07 Feb	-2.4	18:24:08	10°	NNW	18:26:50	22°	NE	18:29:33	10°	E	1
07 Feb	-1.7	20:00:43	10°	WNW	20:03:19	26°	WSW	20:03:19	26°	WSW	١
08 Feb	-3.1	19:12:46	10°	NW	19:16:04	54°	SW	19:18:57	13°	SSE	1
09 Feb	-3.8	18:25:05	10°	NW	18:28:27	73°	NE	18:31:48	10°	SE	١
10 Feb	-0.7	19:15:20	10°	W	19:17:16	15°	SW	19:19:12	10°	SSW	١

Review of Friday's Class magnitudes and filters

- "flux" continued
- $\Delta m = (m_1 m_2) = 2.5 \log (F_2 / F_1)$
- apparent magnitude in visual band: m_v

- Today:
 - "absolute magnitudes":
 - "zero magnitude":
 - "distance modulus":

 M_v , etc. m = -2.5 log (F/F_{m=0}) m-M = 5 log (d) - 5

Photometric Systems

• Meaning of m_b , m_v , etc. (M_b , M_v , B, V, ...)

"Magnitudes" very useful rules of thumb

- Every 5 magnitudes = ??
- Every 2.5 magnitudes = ??
- Every 1.0 magnitudes = ??
- Every 0.5 magnitudes = ??
- Homework:
 - Astronomers often use the approximation that a 1% change in brightness of a star corresponds to a change of 0.01 magnitudes. Justify this approximation.

Let one star have "zero magnitude"

magnitude difference = $\Delta m = (m_1 - m_2) = 2.5 \log (F_2/F_1)$

Let $m_1 \equiv 0$,

so $F_{m=0}$ is the flux from a zero-magnitude star The star Vega is defined as zero-magnitude.

Then
$$m_2 = -2.5 \log (F_2/F_{m=0})$$

So, in general: $m = -2.5 \log (F/F_{m=0})$

 $m=m_v$ and $F=F_v$ are defined for some bandwidth, like visual ("v")

$F_0(\lambda) = F_0(\nu) \cdot C/\lambda^2$ flux for zero-magnitude

• Here's an online calculator:

 <u>https://www.gemini.edu/sciops/instruments/midir-</u> <u>resources/imaging-calibrations/fluxmagnitude-conversion</u>

Table 1. UBVRIJHKLM Filters										
Band	$\lambda_{ m eff} \ \mu{ m m}$	${ m FWHM}\ \mu{ m m}$	$f_X(m_X=0)^* \ \mathrm{Jy^{**}}$							
U	0.365	0.066	1780	ultraviolet						
в	0.445	0.094	4000	blue						
V	0.551	0.088	3600	visible						
\mathbf{R}	0.658	0.138	3060	red						
Ι	0.806	0.149	2420							
\mathbf{J}	1.220	0.213	1570	$\downarrow \text{ near-infrared } \downarrow$						
Н	1.630	0.307	1020							
Κ	2.190	0.390	636							
\mathbf{L}	3.450	0.473	281							
Μ	4.750	0.460	154							

 $^*m_X = 0$ for a star with spectral type and luminosity A0 V.

**Note: 1 Jy = 10^{-26} W m⁻² Hz⁻¹.

- f_X (m_X = 0) = zero point flux density of X. I.e., the flux density of a zero magnitude star (the star Vega)
- If the flux density of wavelength X is measured, then the mag is,

$$m = -2.5 \log \frac{f_x(\text{source})}{f_x(m_x = 0)}$$

Problem

Assume you have two stars with individual apparent magnitudes of 3 and 4. What is the apparent magnitude of the unresolved pair of stars?

[Since magnitudes are logarithmically related to flux, you cannot simply add two magnitudes together to find the total apparent magnitude of an unresolved binary star.]

Problem Solution fluxes add – magnitudes do not

- $m_1 = -2.5 \log (F_1/F_{m=0}) = 3$
- $m_2 = -2.5 \log (F_2/F_{m=0}) = 4$
- $m_{total} = -2.5 \log [(F_1 + F_2) / F_{m=0}] = ?$
- $-0.4m_1 = \log (F_1/F_{m=0})$
- $F_1 = F_{m=0} * 10^{-0.4m1}$
- $m_{total} = -2.5 \log[10^{-0.4m1} + 10^{-0.4m2}]$
- m_{total} = -2.5 log (0.082)
- m_{total} = 2.64
- Does this magnitude value make sense?

Absolute Magnitude

magnitude difference = $\Delta m = (m_1 - m_2) = 2.5 \log (F_2/F_1)$ F = L/4 π d²

$$(m_1 - m_2) = 2.5 \log (L_2/d_2^2 \div L_1/d_1^2)$$

Imagine <u>the same star</u> viewed at two distances:

- its real distance (d in parsecs) - with magnitude m

- an absolute distance (d_{10}) of 10 parsecs – with magnitude M (m-M) = 2.5 log (d^2/d_{10}^2)

 $m-M = 5 \log (d) - 5$

m-M = -5 log (p) -5, where p = parallax angle in arcsec m-M is called the *"distance modulus"*

Problem What is the absolute visual magnitude of the Sun?

Absolute visual magnitude of Sun = M_V = ?

Apparent visual magnitude of Sun = m_V = -26.7

 $m-M = 5 \log (d) - 5$

Problem Solution

- Absolute visual magnitude of Sun $= M_V = ?$
- Apparent visual magnitude of $Sun = m_V = -26.7$
- $m_v M_v = 5 \log (d) 5$
- $M_v = m_v 5 \log (d) + 5$
- $M_v = (-26.7) 5 \log (1/206265 pc) + 5$
- M_v = 4.8
- Does this answer make sense?
- Distance modulus = -26.7 4.8 = -31.5

Another "Magnitude" Problem "color index"

m_U – m_B
 – aka, U-B

- m_B m_V
 aka, B-V
- For an object with B-V > 0, is the object reddish or bluish?

The Hertzsprung-Russell Diagram

"Blackbody Spectrum"

- In your junior year Quantum Mechanics course, you will derive a formula for the flux of light emitted at different wavelengths (frequencies) from a perfectly absorbing body ("opaque").
 - the "Planck function" = $B_{\lambda}(T)$
 - "thermal radiation"
- The monochromatic flux emitted from the surface of such an object is
- $F_{\lambda} = \pi B_{\lambda}(T)$ erg sec⁻¹ cm⁻² Hz⁻¹
- $F_v = \pi B_v(T)$ erg sec⁻¹ cm⁻² cm⁻¹
- $\pi B_{\lambda}(T) = (\pi c/\lambda^2) \cdot B_{\nu}(T)$ because $d\lambda \neq d\nu$

"Blackbody Spectrum"

What are the terms? What's missing?

Approximations to the Planck Function

For long wavelengths:

$$B_{\lambda}(T) = \frac{2hc^2/\lambda^5}{e^{hc/\lambda kT} - 1}$$

- Rayleigh-Jeans distribution
- For $\lambda \gg hc/kt$

- Wien distribution
- For $\lambda \ll hc/kt$

Stefan-Boltzmann Law total emitted flux over all wavelengths

• Integrate over wavelength (frequency): $F = \pi \int_0^\infty B_\lambda(T) d\lambda$ $F = \sigma T^4$

- So, the luminosity of a star is: $-L = 4\pi R^2 F_{obs} = 4\pi R^2 \sigma T^4$ erg sec⁻¹
 - Stellar Luminosity α (Radius)² · (Temperature)⁴

A Continuous "Spectrum" A spectrum is like a recipe! contains light of all wavelengths but not in equal amounts

 $\frac{\text{Wien's "Law"}}{\text{The hotter the object, the bluer its}}$ color. $\lambda_{max} = \frac{3 \times 10^{6} \text{ nm}}{\text{T}}$

<u>Stefan-Boltzmann "Law"</u> The total amount of light emitted from a given area depends on the temperature to the 4th power!!

(Total Emitted Energy) α T⁴

Emphasize a consequence of the Stefan-Boltzmann Law

Curves of different temperature never cross each other.

Spectrum of Our Sun with and without Earth's atmosphere

The Hertzsrpung-Russell Diagram What are the ranges of T and L? Are those consistent?

How would you locate the peak wavelength (λ_{max}) of the Planck function?

$$B_{\lambda}(T) = \frac{2hc^2/\lambda^5}{e^{hc/\lambda kT} - 1}$$

Find the inflection point: $d(B_{\lambda}(T)) / d\lambda \equiv 0$

let $x \equiv hc/\lambda kT$

after differentiating: $xe^{x} / (e^{x} - 1) = 5$ solution is x = 4.965

Can show that: $\lambda_{max} T = hc / 4.965 k = 0.2898 cm K$

 λ_{max} (nm) \approx (3 x 10⁶) / T (Wien's Law)

Wien's Law

- $\lambda_{max} T = (2.898 \times 10^{-1}) \text{ cm K}$
- v_{max} / T = (5.879 x 10¹⁰) Hz K⁻¹
- I've memorized:

$$\lambda_{max} \approx (3 \times 10^6) / T$$
 nm

Graph Your Own Blackbody Spectra label the axes and λ_{max}

- T = 300 K
- T = 3,000 K
- T = 30,000 K

•
$$\lambda_{max} \approx (3 \times 10^6) / T \text{ nm}$$

Blackbody Spectra The curves do not cross!

