

Radio "Light"

What concepts about light are relevant to cellphones?

- Uses electromagnetic radiation – radio waves
- Signal travels at the speed of light

 3 x 10⁸ m/sec
- Light travels in a straight line in a vacuum — need antennas to relay signal
- Signal strength decreases as inverse-square Making a distance
 Phone Call
 - need antennas to relay signal
 - some dead zones
- Light carries energy is transferred in differer forms:
 - sound to mechanical to light and back again

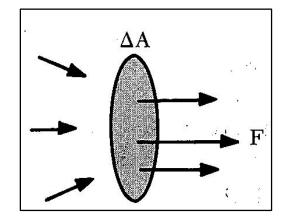
What happens when you change channels on your radio?

"Flux"

this quantity can be measured by detectors

The <u>rate</u> of energy passing through a differential area:

$$\mathbf{F} = \mathbf{Flux} = \frac{dE}{dAdt}$$



What are the units of Flux?

ergs cm⁻² sec⁻¹ = W m⁻² 1 Watt = 10^7 erg/sec

"Luminosity"

L = flux integrated over the surface area of the object

$$L = \int_{surface} F \, dA$$

If F is constant and the surface is spherical (radius = R), then

$\mathbf{L} = \mathbf{4}\pi\mathbf{R}^2\cdot\mathbf{F}$

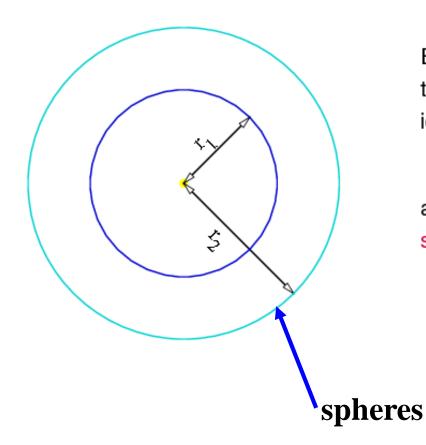
where F is flux at the surface and $4\pi R^2$ is surface area of the sphere

What do you see happening in this picture?

The bulb emits light in all directions. Its light carries energy. 200 Watts is a certain amount of energy per second.

How determine the total energy hitting a person's face in an hour?

Inverse-square "Law" of Energy Propagation



Because of energy conservation, flux through two shells around source is identical:

$$4\pi r_1^2 F(r_1) = 4\pi r_2^2 F(r_2) \qquad (2.46)$$

and therefore we obtain the inverse square law,

$$F(r) = \frac{\text{const.}}{r^2}$$
(2.47)

The "inverse-square law" apply energy conservation

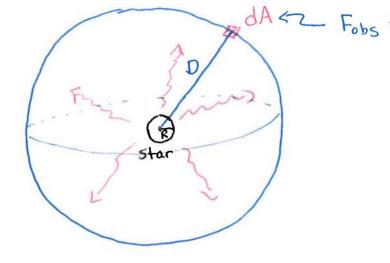
For a star of radius (R_{*}) and luminosity (L_{*}): $L_* = 4\pi R_*^2 \cdot F_* = dE_*/dt$

For an observer far away, the same rate of energy will expand outwards and flow through a larger sphere surrounding the star

$$L_* = dE_*/dt = 4\pi D^2 \cdot F_{obs} = 4\pi R_*^2 \cdot F_*$$
$$F_{obs} = F_* (R/D)^2$$

So, $F_{obs} \alpha 1/D^2$

i.e., "inverse-square" law



Problem derive the "Solar Constant" essential for designing solar panel systems

How many watts of sunlight reach a 1m² surface on Earth?

$$L_{Sun} = 4 \times 10^{26} \text{ W}$$

Distance to Earth = 1 AU = 1.5 x 10¹¹ m

$$\mathbf{F}_{\rm obs} = \mathbf{L}_{\rm Sun} / 4\pi \mathbf{D}^2$$

 $F_{obs} \approx 2000 \text{ W/m}^2 = 2 \text{ kW/m}^2$

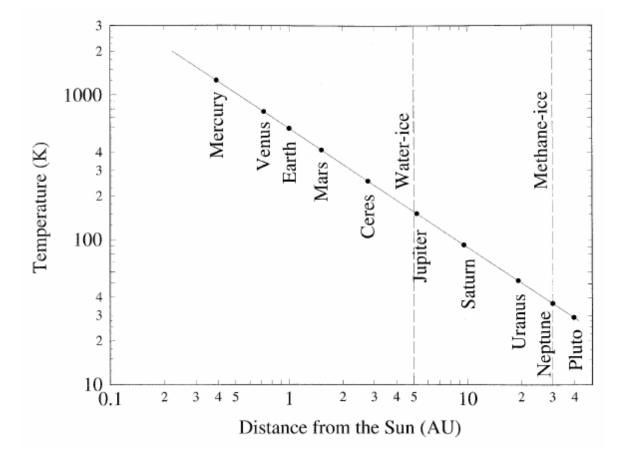
Problem

For a parent star of 3 L_{Sun} , how far away would a planet need to be to receive the same amount of energy as the Earth does from the Sun?

$$-L_{Sun} = 3.8 \times 10^{33} \text{ erg sec}^{-1}$$

 $-R_{Sun} = 7 \times 10^{10} \text{ cm}$

Why Do Planets Become Colder with Distance From the Sun?



The graph uses a 'logarithmic' scale.

Review logarithms

- In the following:
 - $-\log N \equiv \log_{10} N$
- Log scales in graphs
 - If every power of ten is an equal interval, then ...
 - half an interval is $0.5 = \log x$, or $x = 10^{0.5} = 3.16$

- log 3 = 0.477

• Examples:

- $-\log 6 = \log (3^{*}2) = \log 2 + \log 3 = 0.778$
- $-\log 8 = \log (2^3) = 3\log 2 = 0.903$
- $-\log 9 = \log (3^2) = 2\log 3 = 0.954$

Interactive Problems

Pretend you are comparing three stars in the same constellation.

<u>a.</u> Your favorite star is 100 times more luminous than star #2 but both appear equally bright. How many times farther away is your favorite star?

b. Stars #2 and #3 have the same luminosity, yet star #2 appears 100 times fainter than star #3. How many times farther away is star #2?

<u>c.</u> The parallax of star #3 indicates its distance is 100 light-years. What are the distances to all three stars?

Make a Drawing

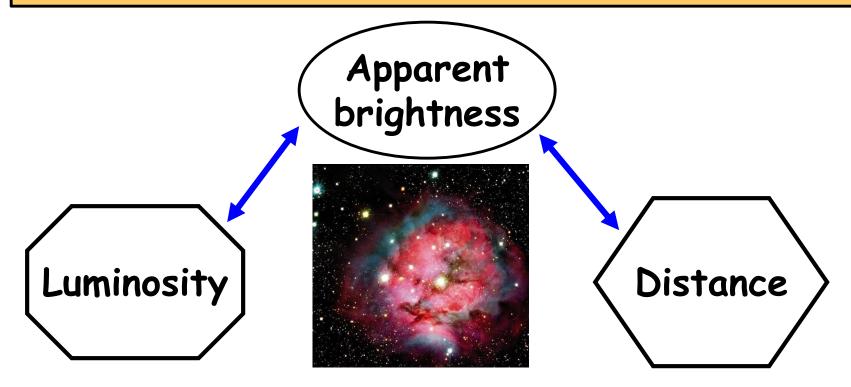
you

#1: 100 L
same brightness as #2

#2: L 100x fainter than #3

#3: L 100 light-years

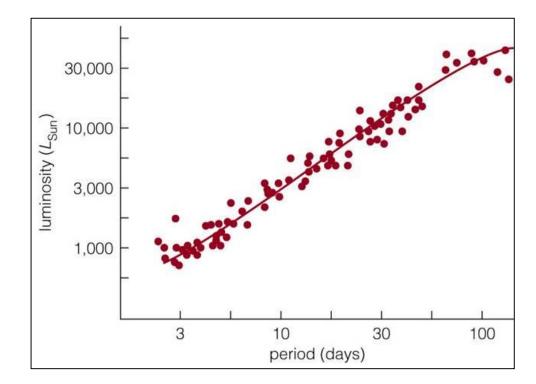
"Standard Candles" An object's brightness depends on its distance and how bright it really is.



If we know two of these characteristics, we can determine the third.

More Interactive Problems

The Sun-like star α Cen has ~1 L_{Sun}. If a Cepheid star of ~30 day period has the same brightness as α Cen, how far away is the Cepheid star? The Period-Luminosity Law for Cepheid variable stars is shown below.



"Monochromatic Flux" "Flux Density"

The flux in a particular bandwidth of wavelength or frequency

 $\mathbf{F}_{\lambda} = dE / (dA dt d\lambda)$ $\mathbf{F}_{\nu} = dE / (dA dt d\nu)$

What are the units of Flux Density?

<u>units</u>: ergs cm⁻² sec⁻¹ cm⁻¹ ergs cm⁻² sec⁻¹ Hz⁻¹

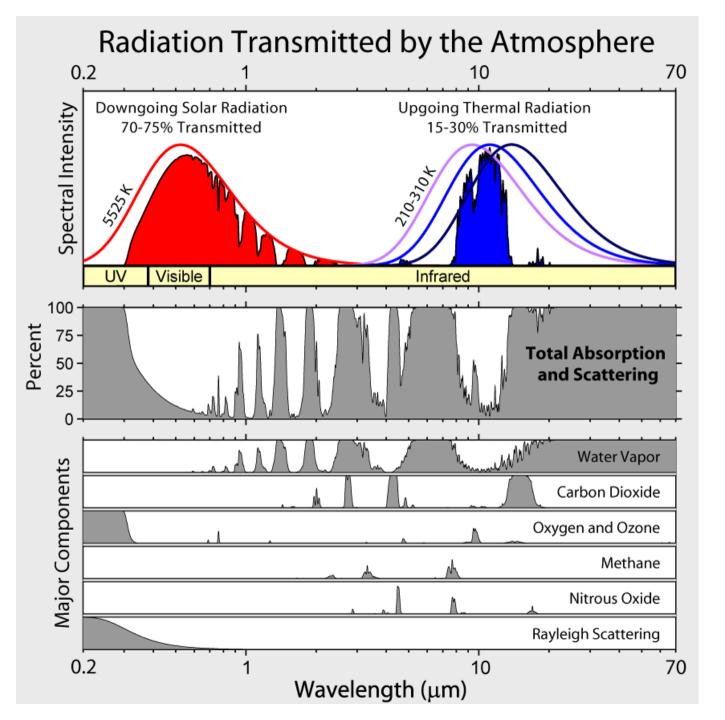
Total Flux Emitted by an Object

Integrate over all wavelengths or frequencies

$$\mathbf{F} = \int_{\mathbf{0}}^{\infty} \boldsymbol{F}_{\nu} \, \boldsymbol{d}\nu = \int_{\mathbf{0}}^{\infty} \boldsymbol{F}_{\lambda} \, \boldsymbol{d}\lambda$$

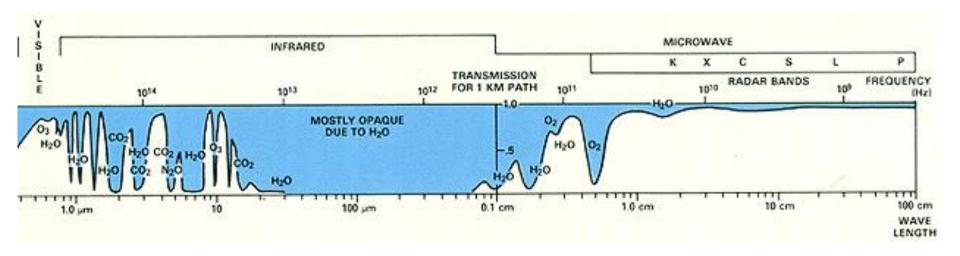
<u>units:</u> ergs cm⁻² sec⁻¹

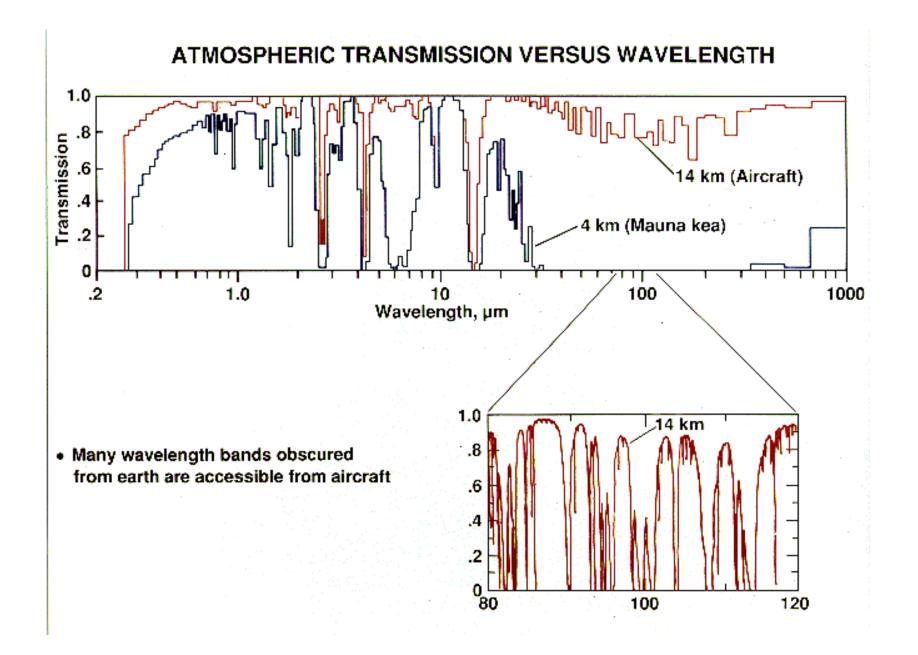
[Solve problem #2 in Homework #5 to find the conversion.]



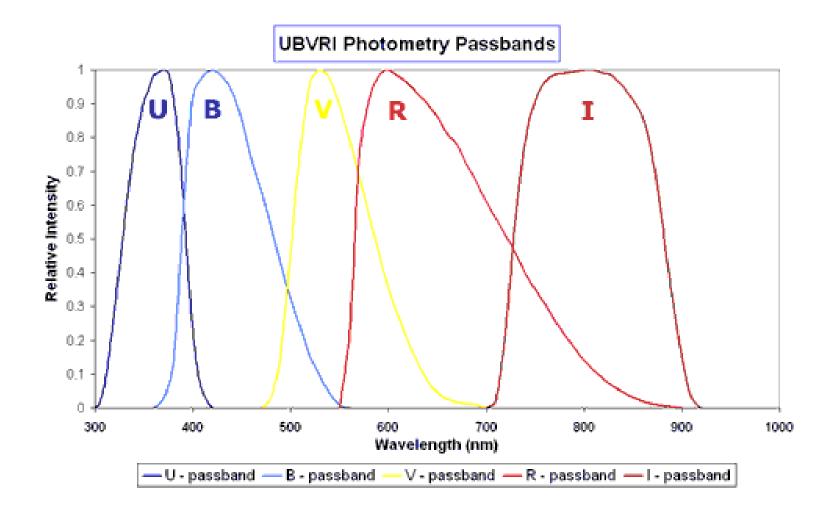
photometric "windows"

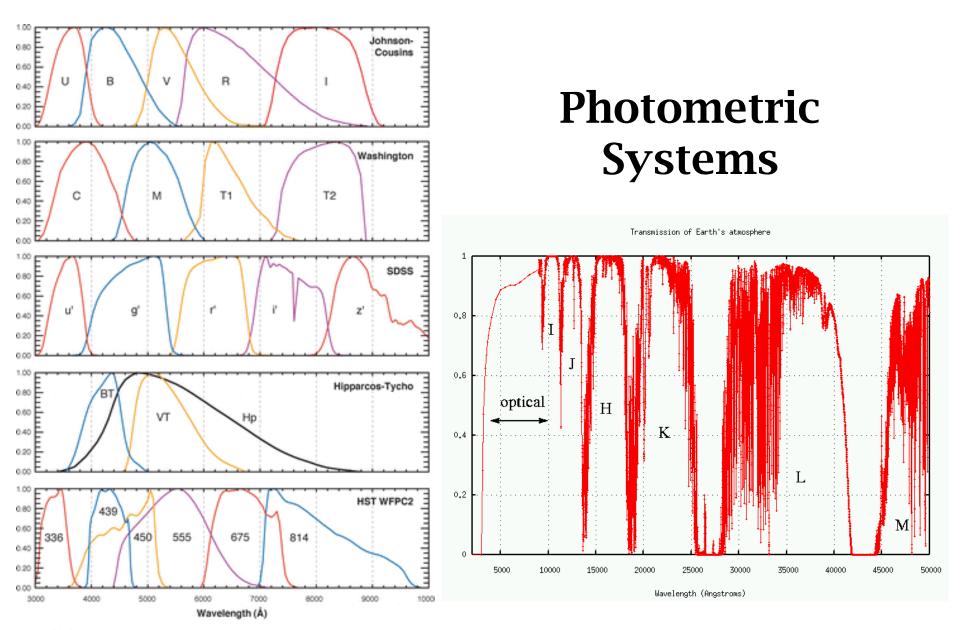
Atmospheric Transmission "windows" of transparency





"Photometric" Filters





Bessell, MS. 2005 Annu. Rev. Astron. Astrophys. 43: 293-336

"Magnitudes"

- Hipparchos (~150 BC):
 - Labelled stars according to "size" (i.e., apparent brightness = flux)
 - 1st magnitude brighter than 6th
- Our senses are logarithmic, i.e., powers of ten.
- From modern electronic measurements:
 - A difference of one magnitude equals a flux ratio of
 - $100^{1/5} = 2.5119$
 - so 5 magnitudes = $[100^{1/5}]^5 = 100x$ in flux (brightness)
 - F (mag = 2) / F (mag= 1) = 2.5119
 - $F_2/F_1 = 2.5119^{(m1-m2)}$

Consider two stars of flux F₁ and F₂

 $2.5119^{(m1-m2)} = F_2/F_1$

 $(m_1 - m_2) \log (2.5119) = \log (F_2/F_1)$

 $\log (2.5119) = \log (100^{1/5}) = 1/5 * \log 100 = 0.4$

 $0.4 (m_1 - m_2) = \log (F_2 / F_1)$

 $\Delta m = (m_1 - m_2) = 2.5 \log (F_2/F_1)$

<u>CHECK</u>: What if $m_1 - m_2 = 5$. Then $F_2/F_1 =$ ___?

Let one star have "zero magnitude"

magnitude difference = $\Delta m = (m_1 - m_2) = 2.5 \log (F_2/F_1)$

Let $m_1 \equiv 0$,

so $F_{m=0}$ is the flux from a zero-magnitude star The star Vega is defined as zero-magnitude

Then $m_2 = -2.5 \log (F_2/F_{m=0})$

So, in general: m = -2.5 log ($F/F_{m=0}$)

m=m_v and F=F_v are defined for some bandwidth, like visual ("v")