### *"How to Solve It"* Polya, 1945 Experts in different fields share a common problem-solving approach.



Understand the problem.

Devise a plan.

Carry out the plan and check each step along the way.

Look back and examine the solution.

## **Angles and Terminology**



# What is an Angle?

An angle is the "arc" between two different directions.

An object has an APPARENT size - an "angular size"





Each circle has 360 degrees = 360°

One degree = 60 arcminutes = 60'

The Sun & Moon appear to be 0.5° = 30 arcminutes

# **<u>How</u>** convert between time and angle?

• Earth rotates 360 degrees in 24 hours

• Do the math:

- 360 deg / 24 hr = 15 deg / hr

• <u>Problem</u>: In what amount of time would the Sun appear to move its own angular diameter?



one "arcsecond"

the apparent width of a dime 2.5 miles away

1/3,600 of a degree

2.8 x 10<sup>-3</sup> deg 2.8 milli-deg

### What are latitude and longitude? Check to be sure you know!



<u>Tucson</u>: 32.2226° N and 110.9747° W Develop a Plan: Convert these to deg: arcmin: arcsec

### What is a 'radian' ? another unit of angle

- One radian is the angle (O) subtended by the arc of a circle with the same length as the circle's radius.
  - a ratio of two lengths, i.e., dimensionless
- In general, s = r O, where O is expressed in radians.





### What is a 'radian' ? another unit of angle

- For a "unit circle," r = 1.
- Consider the circumference:
  - $-\Theta = s/r = 2\pi r/r = 2\pi$  radians
  - conversion:  $2\pi$  radians = 360 deg



- so, one rad = 57.3 degrees
- How many arcseconds per radian?







### **Problem:** My Cross Stave Why is a length of 57.3 cm convenient?



angle = 1 cm / 57.3 cm = 1/57.3 radians

angle = (1/ 57.3) rad x 57.3 deg/rad = 1 deg

**<u>Or, visualize</u>:** One radian angle corresponds to 57.3 cm of arc and 57.3 cm of radius.

If you shrink the arc to 1 cm (i.e., 57.3 x), then the angle shrinks to 1 deg.

### "Angular Diameter" a ratio of size to distance

for small angles ... Size = Distance \* Angle  $S = D * \theta$  $\theta = S/D$  in radians



An object's "angular diameter" appears smaller the farther away.

# **Problem:**

# <u>How</u> would you estimate the angular diameter of the supergiant star Betelgeuse?



### ~10<sup>3</sup>x larger than Sun 1.4 x 10<sup>5</sup> x farther than Sun

642 light-years away 1.2 x 10<sup>9</sup> km diameter

### **Problem:** First Proof of Earth's Motion 1728 – two centuries after Copernicus!

### "Aberration of Starlight"

- Earth is traveling through a "wind" of starlight.
- The apparent direction of starlight shifts because of our motion.
- Earth moves 18.5 miles/sec.
- <u>How</u> determine the magnitude of this effect?





James Bradley (1693-1762)

### Measuring Distances to Stars "parallax"

Easiest way of measuring distance: A surveying method

An object seems to change position if we change our viewpoint.

The Earth gives different viewpoints as it revolves in its orbit.

The angle a star appears to move is its "parallax."



Definitely NOT to scale!

WHY?

# Why obtain the observations six months apart?



tan (p) = 1 AU / dFor small angles in radians, tan (p)  $\approx p = 1/d$ 

### **Parallax** What is a "parsec" (pc)?

- p (radians) must be dimensionless
   so d must be in AU
- p is actually measured in arcseconds, so
   p (arcsec) = p (rad) x 206265 arcsec/rad
- p (arcsec) = 206265/d, where d (AU)
- p (arcsec) = 1/d where d is in "parsecs"
  1 pc = 206265 AU = one parsec
- Parsec: <u>Parallax of one arcsecond</u>

# A "Parsec" corresponds to a <u>par</u>allax angle of one arc<u>sec</u>ond



parallax (arcsec)

# **Problem:**

# <u>How</u> estimate how much bigger stellar parallax angles would be from Mars vs. Earth?



### Parallax angles to ...

Across the diameter of Earth: Moon (~1°) Mars (~20") Sun (8.8")

Across the diameter of Earth's orbit: stars (<1")

# Pointing a Modern Telescope

- Must correct for these phenomena:
  - Aberration of starlight
  - Precession
  - Nutation
  - Refraction
  - Proper motion
  - Flexure
- These corrections range from arcsec to arcmin.

### Azimuth, Elevation Coordinates AZ-EL or AZ-ALT change with time



#### The 6.5 m MMT Observatory south of Tucson All modern telescopes must point blindly to ~1 arcsec.

### Equatorial Coordinates the "Celestial Sphere" concept mark on your plastic ball

Earth was imagined to be inside at center.

Stars & constellations are fixed on a rotating sphere surrounding the Earth.

Earth's poles and equator are "projected out" onto the celestial sphere.

Sun moves along the yellow path ("ecliptic").



### Equatorial Coordinates right ascension and declination do not change with time (sort of)



- DEC: deg: arcmin: arcsec
- RA: hours: min: sec
- <u>How</u> convert between time and angle?

Note how zero-point of RA is defined.

# **<u>How</u>** convert between time and angle?

• Earth rotates 360 degrees in 24 hours

• Do the math:

- 360 deg / 24 hr = 15 deg / hr

• <u>Problem</u>: In what amount of time would the Sun appear to move its own angular diameter?

### Equatorial Coordinates right ascension and declination do not change with time (sort of)



- What is the declination of Polaris?
  - From Tucson (lat ≈ 32 deg)
    - What is the altitude of Polaris?
    - What DEC is overhead?
    - What is the lowest DEC you can observe?

# Angle of Polaris Above the Horizon



http://homepage.mac.com/kvmagruder/images/polarislat.gif

# The angle of Polaris above horizon (altitude) equals your latitude.

### Equatorial Coordinates <u>More Terms</u>: sidereal time, hour angle, transit

