

- Please pick up your papers
- Next TIMESTEP meeting (March 4; PAS 218)
 - Resume Building and Interview Preparation
- Exam #1 (March 4)
 - Doodle Sheet comments
 - open book & notes
 - handwritten crib sheet

Minima for the Eclipsing Binary Algol

Computed dates (<i>mm/dd/yyyy</i>) and	Corresponding local dates (<i>mm/dd/yyyy</i>)		
Universal Times	and times of		
of Algol minima:	Algol minima:		
02/29/2020 @ 03:55 UT	02/28/2020 @ 08:55 PM		
03/03/2020 @ 00:45 UT	03/02/2020 @ 05:45 PM		
03/05/2020 @ 21:34 UT	03/05/2020 @ 02:34 PM		
03/08/2020 @ 18:23 UT	03/08/2020 @ 11:23 AM		
03/11/2020 @ 15:13 UT	03/11/2020 @ 08:12 AM		
03/14/2020 @ 12:02 UT	03/14/2020 @ 05:02 AM		
03/17/2020 @ 08:51 UT	03/17/2020 @ 01:51 AM		
03/20/2020 @ 05:40 UT	03/19/2020 @ 10:40 PM		

Comments on Homework #16 do not cancel the "sin i" – WHY?

$$M_{\rm B} \sin i \approx \left(\frac{M_{\rm A}^2 P}{2\pi G}\right)^{1/3} v_{\rm A} \sin i$$
$$\approx 11 M_{\oplus} \left(\frac{M_{\rm A}}{1M_{\odot}}\right)^{2/3} \left(\frac{P}{1\,{\rm yr}}\right)^{1/3} \left(\frac{v_{\rm A}}{1\,{\rm m}\,{\rm s}^{-1}}\right).$$

Stars

the Hertzsprung-Russell diagram

Hertzsprung-Russell Diagram

Stellar "Spectral Types" visual wavelengths (aka, "optical spectra")

All stars illustrated are of luminosity class V Cramer HL-Speed Special

New discoveries in physics:

- 1. nuclei of atoms
- 2. fixed orbits of electrons;
- 3. different number of electrons for each element;
- 4. temperature can affect number of spectral lines.

Cecilia Payne-Gaposchkin 1900-1979

She showed that the spectral sequence was in order of stellar temperature.

Stars are made almost entirely of hydrogen and helium even though their spectra don't always show strong lines of these elements.

STARS: 90% hydrogen, 9% helium, trace of heavier elements ("metals")

The Hydrogen Atom What regions of the electromagnetic spectrum?

What Causes Absorption Lines?

The hotter the object, the bluer its peak wavelength and the more light it emits.

 $\lambda_{peak} = \underline{constant}$ in nanometers

Payne Reorganized the Alphabet the spectral sequence vs. temperature

"Oh, Be A Fine Girl (or Guy) Kiss Me!" "Only Boys Accepting Feminism Get Kissed Meaningfully." "One Bug Ate Five Green Killer Moths."

The Spectral Sequence (Temperature) is continuous (i.e., very smooth)

Cause of a Stellar Spectrum

Which of these stars is hottest?

A .	Тор
В.	Middle
C .	Bottom

Work together!

Classify this spectrum from the SDSS

RA=146.91375, DEC=-0.64448, MJD=51630, Plate= 266, Fiber= 15

Classify this spectrum from the SDSS

Line Strength Why is temperature important?

Roman "I": neutral atom Roman "II": once ionized atom

The Hydrogen Atom Lyman, Balmer, Paschen, ... series

Lyman-alpha (L α): 121.6 nm (1216 Å) Balmer-alpha (H α): 656 nm

O-stars have weak hydrogen lines Why?

Hydrogen Atom <u>calculate</u> ionization (energies, λ) from n=1 and 2

Hydrogen

Energy Levels for the Hydrogen Atom

"ionization" energy = ?
"ionization" wavelength = ?

$$E_n = -13.6 \text{ eV} \frac{1}{n^2}$$

 $h = 6.626 \ x \ 10^{-34} \ m^2 \ kg \ sec^{-1} \\ 1 \ ev = 1.6 \ x 10^{-19} \ J$

The Hydrogen Atom Lyman, Balmer, Paschen, ... series

Lyman-alpha (L α): 121.6 nm (1216 Å) Balmer-alpha (H α): 656 nm

Luminosity Classes plot these stars on the H-R Diagram $L = 4\pi R^2 \sigma T^4$

Sun:	G2 V		
Betelgeuse:	M2 la		
Achernar:	B6 V		
Aldebaran:	K5 III		
Vega:	A0 V		

The Hertzsprung-Russell Diagram spectral types and luminosity classes

Homework #19

The H-R Diagram is usually plotted in logarithmic coordinates because the luminosity (L) and temperature (T) span such a wide range of values.

Mathematically derive the slope of a line of constant radius in a log L vs. log T version of the H-R Diagram.

Check your answer by measuring the slope of a line of constant radius in the H-R diagram below.

The Grand Illusion

Rank the luminosity of the stars (A-F) from greatest to least luminous.

$$\mathbf{L} = 4\pi \mathbf{R}^2 \mathbf{\sigma} \mathbf{T}^4$$

Star	A	В	C	D	F	F
Surface Area	1	1	2	2	2	
Temperature	1000 K	2000 K	2000 K	3000 K	1000 K	2000 K
L						

Which star has the biggest R²T⁴?

- A. D,F,C,E,B,AB. D,F,C,B,E,A
- C. F,D,B,C,E,A

Work together!

Spectral Type temperature Luminosity Type radius

N

Star: Betelgeuse Spectral Type: M2 I Parallax: 0.00763'' Distance: 131 pc Apparent Magnitude: 0.41 Luminosity: 38,000 L_{\$\phi\$}

Star: Procyon Spectral Type: F5 IV-V Parallax: 0.28593" Distance: 3.50 pc Apparent Magnitude: 0.37 Luminosity: 7.4 L_{\$\phi\$}

> Star: Sirius Spectral Type: A1 V Parallax: 0.37922'' Distance: 2.64 pc Apparent Magnitude: -1.46 Luminosity: 26 L_{\$\phi\$}

Star: Rigel Spectral Type: B8 I Parallax: 0.00422'' Distance: 237 pc Apparent Magnitude: 0.14 Luminosity: 70,000 L_{\$\phi\$}