
Comments: Homework #9

- 49 Ceti circumstellar dust
 - not opaque (used wrong equation?)

- consolidate before calculating
 - (6000)⁴ / (5000)⁴
 - $= (6000/5000)^4 = (6/5)^4$
- precision
 - 5.69863296735 not necessary
 - implies a specific accuracy
- scientific notation
 - Use for all parts of your solutions

Prove this Statement

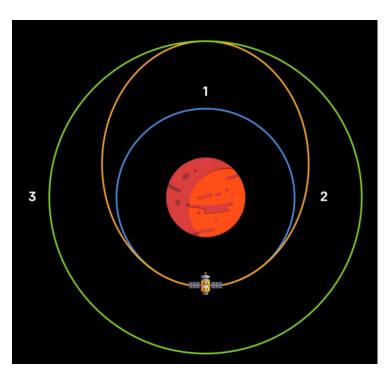
"The energy needed to achieve low Earth orbit is roughly half of the total energy to reach anywhere in the Solar System."

Compare the kinetic energies.

$$\frac{1}{2} m v_{esc}^{2} = \frac{1}{2} m (\sqrt{2} v_{c})^{2}$$

 $\frac{1}{2} m v_{esc}^{2} = m (v_{c})^{2}$

$$\frac{\text{KE}_{\text{esc}} = 2 \text{ KE}_{\text{C}}}{\frac{1}{2} \text{ KE}_{\text{esc}} = \text{KE}_{\text{C}}}$$

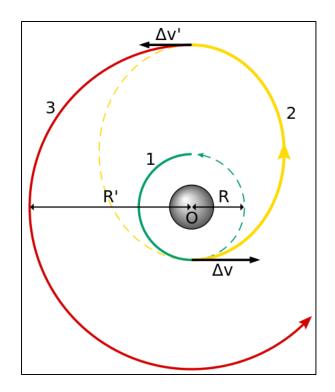

Justifies the need for an orbital "waystation."

Vis-Viva Equation speed at any point in an orbit equation 3.67

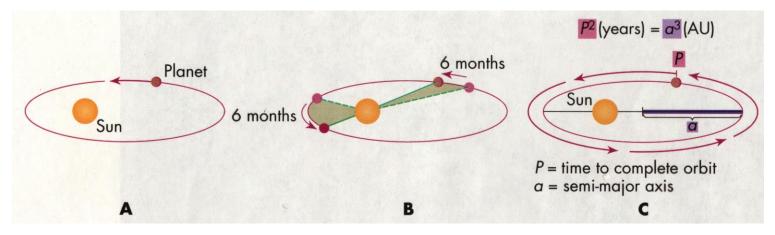
$$v^2 = G(M+m)(\frac{2}{r} - \frac{1}{a})$$

What is v_{esc} from Earth to leave Solar System?

True or false: *"It's much more difficult to reach the Sun than it is to leave the Solar System altogether."*



Hohmann transfer orbit


Hohmann Transfer Orbit minimum energy usage => maximize payload

• Shown: Earth-Mars

- 9 month travel time
- "windows" open every 26 months
- Parker Solar Probe
 - ExCr: Calculate energy required to reach 0.04 AU vs to Mars
 - Using textbook, I got 60x more energy required!

Newton's Law of Gravity Explains Kepler's THREE laws

Newton explained Kepler's Third Law (P² = a³) using gravity. Newton found a more thorough mathematical form.

$$P^{2} = \frac{4\pi a^{3}}{G(M_{1}+M_{2})}$$

Knowing the orbit of an orbit (P and a), one can find the masses of the objects.

Dividing Equations

$$P^{2} = \frac{4\pi A^{3}}{G(M_{1}+M_{2})}$$

Consider two binary systems and distinguish between them with capital letters.

$$p^2 = \frac{4\pi a^3}{G(m_1 + m_2)}$$

 $(P/p)^2 = (A/a)^3 (m_1 + m_2) / (M_1 + M_2)$

(continued)

$$(P/p)^2 = (A/a)^3 (m_1 + m_2) / (M_1 + M_2)$$

If the second system is the Earth-Sun, then p = 1 yr, a = 1 AU, and $(m_1 + m_2) = 1 \text{ M}_{sun}$.

This is equivalent to measuring P (yrs), A (AU), and M (solar masses):

$$P^{2} = \underline{A}^{3}$$
$$(M_{1}+M_{2})$$

Kepler's Third Law

- If you choose these units:
 - period (P) in years
 - semi-major axis (a) in AU
 - mass in "solar masses"
- Then, we can rewrite Kepler's Third Law:
 P² = a³ / M_{total}
- For a binary star: $-P^2 = a^3 / (M_1 + M_2)$

Problem

- "Low-Earth orbit" definition:
 altitude ~1/3 radius of Earth
- What is the period of a "low-Moon" orbit?
 Use your knowledge of the Earth-Moon system.

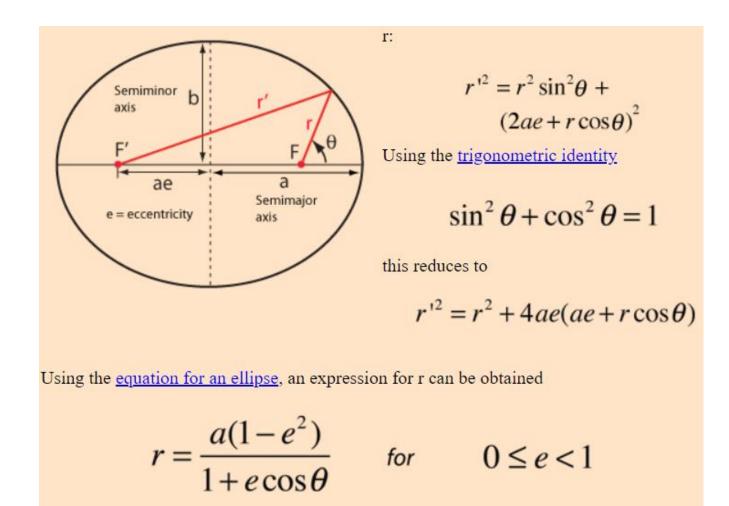
Solution

- $P^2 = A^3/M$ for Earth
- $p^2 = a^3/m$ for Moon
- A = 4/3 R and a = 4/3 r
 r/R = 0.2725
 M/m = 81.3
- $(p/P)^2 = (a/A)^3 (M/m) = (r/R)^3 (M/m) = (0.2725)^3 (81.3)$
- p/P = 1.28
- p = 115 minutes (for P = 90 minutes) ~ 2 hours

Period of low circular orbit is independent of diameter

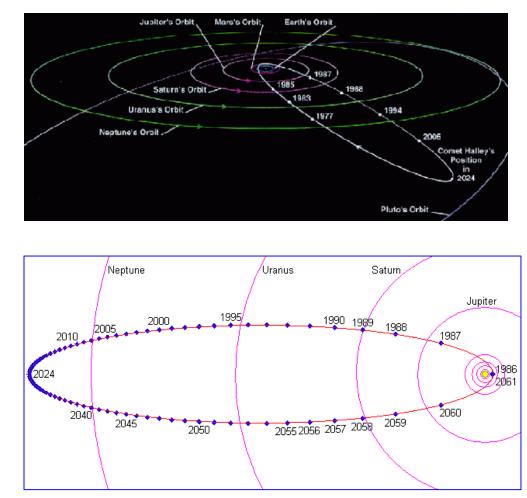
Interestingly the low circular orbit period about a body is independent of its size. It depends only on the density of the object.

$$T = 2\pi \sqrt{\frac{a^3}{Gm}}$$

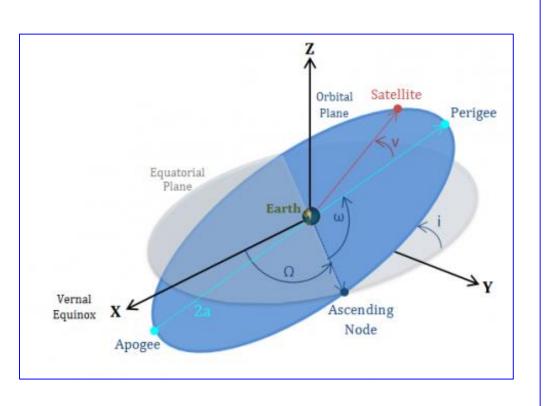

Let's say that the low circular orbit altitude is 6% of the radius of a sphere with average density ρ . Then:

$$T=2\pi\sqrt{rac{3{(1.06r)}^3}{4\pi G
ho r^3}}$$
 $Tpproxrac{3.35}{\sqrt{G
ho}}$

So low orbits around rocky bodies will be on the order of two hours, regardless of the size.


For Earth, $\rho = 5.51 \,\mathrm{g/cm^3}$, which gives a period of 92 minutes. For the Moon with $\rho = 3.34 \,\mathrm{g/cm^3}$, the period is 118 minutes. Mars' $\rho = 3.93 \,\mathrm{g/cm^3}$, giving 109 minutes. Tiny Ceres at $\rho = 2.08 \,\mathrm{g/cm^3}$ gives 150 minutes. (Dawn won't get that low.)

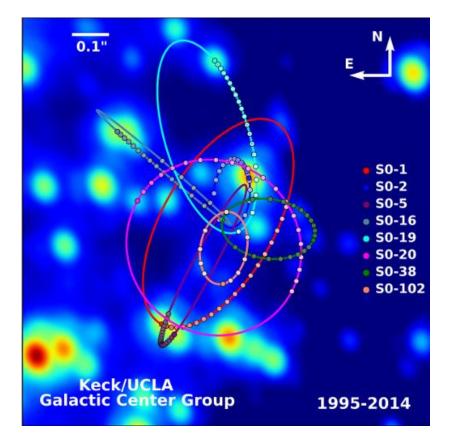
Problem derive expressions for perihelion and aphelion

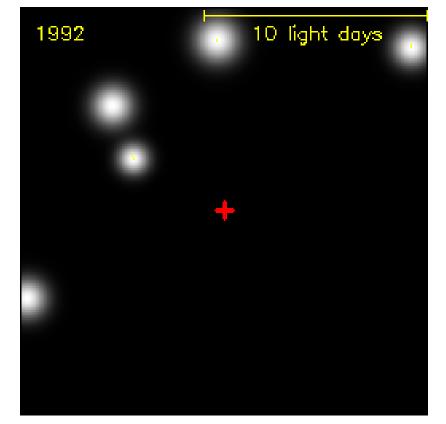


Problem Halley's comet

Semi-major axis	17.834 AU
Eccentricity	0.96714
Orbital period	75.32 yr
Mean anomaly	38.38°
Inclination	162.26°
Longitude of ascending node	58.42°
Argument of perihelion	111.33°

Orbital elements


- size & shape of orbit
 a, e
- orientation of orbital plane
 i, Ω
- orientation of ellipse in the plane


- ω

position of object

 $-\nu$

Stars Orbiting the Black Hole at the Center of Our Milky Way Galaxy Do Kepler's Laws work there?

Virial Theorem

- For any system of particles bound by an inverse-square force, the time-averaged kinetic energy <T> and the time-averaged potential energy <U> satisfy
 2<T> + <U> = 0
- What assumptions?
- Why is U negative?
- Assumes a "bound" system
 - In equilibrium, neither expanding nor contracting
 - only gravitational forces
- Ignores rotation
- We will apply to globular clusters and the Coma cluster of galaxies

Virial Theorem 2<T> + <U> = 0

- $2T = Nmv^2 = Mv^2$
- m is individual mass
- N is number of objects with mass (m) and average speed (v)
- $U = -\alpha G M^2 / R$
- α is a constant depending on how the mass is distributed
- R is the object's radius
- $Mv^2 = \alpha GM^2/R$
- $M = v^2 R / \alpha G$

Problem globular star cluster (M71)

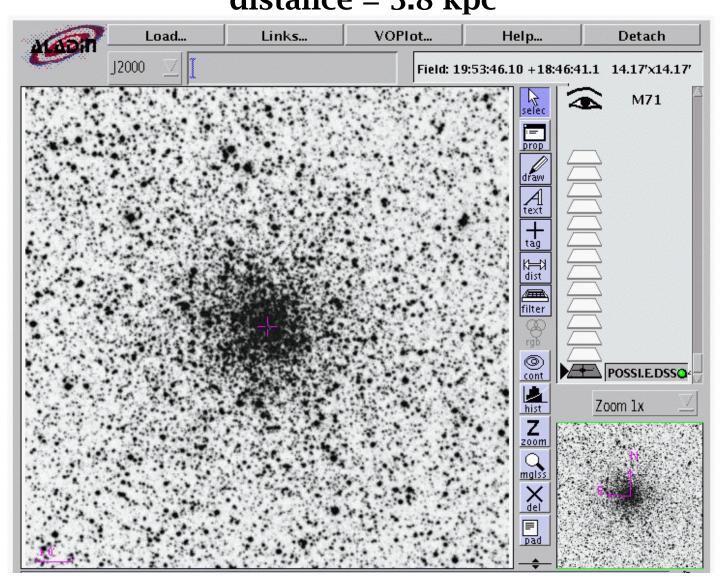

M71 Measurements

TABLE 1-(continued)

Star	M _{bol} e	(v-ĸ)0e	v	B-V	Disk No.	Julian Date	Exposur (min)		This Velocity	Other Velocity	Ref ^b	Notes
					NGC	6838 = M71 (Cudworth	1985a)				
A			10.70	0.53	2654-11 2656-15	6222.984 6223.986	2.5	10.7	-27.1 ± 0.7 -27.0 ± 0.8	-17 ± 7	PS8 3	0,f
B,V2	-3.13	4.66	12.08	1.87	2654-9 2656-13	6222.980 6223.982	7.2	5.5	-18.9 ± 1.3 -19.2 ± 1.5			95
A4 A9	-2.35	3.55	12.20	1.69	2651-19 2651-24	6221.902 6221.931	6 12	10.3	-25.4 ± 0.7 -24.8 ± 0.7	-25	C8 0	94 86
IS	-1.34	••••	12.42	1.57	2656-11 2651-22	6223.976 6221.920		10.4	-15.5 ± 0.7 -23.7 ± 0.7			93 81
1-21 1-29	-1.08		13.02	1.49	2651-28 2651-17	6221.956 6221.896	15	12.7	-21.5 ± 0.6 -23.6 ± 0.8			95 90
1-36 1-45	-2.18		12.79	1.25	2651-30 2654-2	6221.964	10 12	8.5	-22.2 ± 0.9 -22.8 ± 0.8	-24 <u>+</u> 11 -22	GN78 C80	64 94
1 45	2.10	5.00	12.50	1./0	2654-4	6222.958	12	9.8	-23.2 ± 0.8	-29 ± 14 -22 ± 18	GN78 GN78	94
1-46	-2.31	3.64	12.29	1.75	2656-9	6223.968	12	8.8	-23.2 ± 0.9	-26 -16 ± 10	C80 GN78	93
1-53			12.97	1.61	2652-1 2654-7	6221.974 6222.972	10 15	9.6 9.5	-25.1 ± 0.8 -24.2 ± 0.8	10 - 10	01.70	95
1-56			13.14	1.38	2656-7	6223.958	20	11.7	-20.9 ± 0.7			96
1-64	•••	•••	13.10	1.53	2653-26 2656-4	6222.908 6223.943	17 6	12.5 7.7	-17.2 ± 0.6 -17.4 ± 1.0	-24 ± 40 -9 ± 40	HS78 HS78	95
1-66				1.40	2653-28	6222.919	15	13.1	-20.0 ± 0.6			81
1-77 1-113	-1.89 -2.25		12.65 12.43	1.73 1.80	2651-26 2653-24	6221.941 6222.895	12 10	9.7 10.3	-27.1 ± 0.8 -21.5 ± 0.7	-16 ± 19 -29 ± 11 -21 ± 18	GN78 GN78 GN78	73 95

^a In km s⁻¹.

Calculate the Virial Mass of Globular Star Cluster M71 distance = 3.8 kpc

Globular Cluster Properties

Table 1. Basic Facts about the Globular Clusters of the Galaxy

Number known	147
Median distance from Galactic Centre	$9.3 { m kpc}$
Median absolute V magnitude	-7.27
Median concentration	1.50
Median core relaxation time	$3.39\times 10^8 {\rm yr}$
Median relaxation time at the half-mass radius	$1.17\times 10^9 {\rm yr}$
Median core radius	$1.32 \mathrm{pc}$
Median half-mass radius	$3.08 \mathrm{pc}$
Median tidal radius	$34.5 \mathrm{pc}$
Median mass	$8.1 imes 10^4 M_{\odot}$
Median line-of-sight velocity dispersion	$5.50 \mathrm{km/s}$