## Exam #1: Practice and Review

1. The binary star, Albireo ( $\beta$  Cyg), has an angular separation of ~35 arcsec and is located 415 light-years away. How far apart are the two stars in AU? The two stars have masses of ~3.8 M<sub>Sun</sub>. Assuming they are gravitationally bound, what is their orbital period?

**2.** The Arecibo radio telescope, located in Puerto Rico (latitude =  $18^d 20^\circ$ ) was the largest telescope in the world (D=305 m). It is so large that the primary mirror is fixed and does not move. Tracking of astronomical sources is achieved by moving the secondary mirror over a limited range,  $+20^d$  and  $-19^d$  from the zenith.

**a.** Which of the following objects are observable with Arecibo? Explain your reasoning in each case. For example, draw a diagram, do a calculation, and write a quantitative sentence.

**b.** If the sidereal time is  $0^h 0^m$  at midnight which objects are above the horizon at midnight?

| Whirlpool Galaxy (M51) | 13:29:52.7 | +47:11:43 |
|------------------------|------------|-----------|
| Orion Nebula (M42)     | 01:35:17.3 | -05:23:28 |
| IRC +10216             | 09:47:57.4 | +13:16:44 |
| Ring Nebula (M57)      | 18:53:35.1 | +33:01:45 |
| Triangulum Galaxy      | 01:33:50.0 | +30:39:37 |

**3.** A star with an apparent magnitude of  $m_v=10$  is observed over the course of a year to have a parallax of 0.01". What is the star's absolute visual magnitude ( $M_v$ )?

**4.** A star is observed that is 64 times more luminous than the Sun with a diameter twice that of the Sun. What is the effective temperature of the star? ( $T_{Sun} = 5800 \text{ K}$ )

**5.** Jupiter has approximately  $10^{-3}$  the mass of the Sun and  $\sim 10^{-1}$  the diameter of the Sun. What is the ratio of gravitational potential energy of Jupiter compared to the Sun?

6. If the planet Venus had a Moon exactly like ours, would that Moon be within Venus' Hill Sphere?

7. What is the escape speed from the Sun at a distance of 1 AU, moving in a retrograde direction?

**8.** A "minimoon" (asteroid 2020 DC3) has been discovered orbiting Earth. It has a diameter ~20 feet. How would you expect its temperature to compare to Earth's?

9. What is the spectral-luminosity type of a star with these properties:  $\sim 3 L_{Sun}$ ,  $\sim 2 R_{Sun}$ , and this spectrum?



